960 research outputs found

    Electrons and phonons in the ternary alloy CaAl2x_{2-x}Six_x} as a function of composition

    Full text link
    We report a detailed first-principles study of the structural, electronic and vibrational properties of the superconducting C32_{32} phase of the ternary alloy CaAl2x_{2-x}Six_x, both in the experimental range 0.6x1.20.6 \leq x \leq 1.2, for which the alloy has been synthesised, and in the theoretical limits of high aluminium and high silicon concentration. Our results indicate that, in the experimental range, the dependence of the electronic bands on composition is well described by a rigid-band model, which breaks down outside this range. Such a breakdown, in the (theoretical) limit of high aluminium concentration, is connected to the appearance of vibrational instabilities, and results in important differences between CaAl2_2 and MgB2_2. Unlike MgB2_2, the interlayer band and the out-of-plane phonons play a major role on the stability and superconductivity of CaAlSi and related C32_{32} intermetallic compounds

    Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors

    Full text link
    Density functional theory calculations have been used to identify stable layered Li-MM-B crystal structure phases derived from a recently proposed binary metal-sandwich (MS) lithium monoboride superconductor. We show that the MS lithium monoboride gains in stability when alloyed with electron-rich metal diborides; the resulting ordered Li2(1x)Mx_{2(1-x)}M_xB2_2 ternary phases may form under normal synthesis conditions in a wide concentration range of xx for a number of group-III-V metals MM. In an effort to pre-select compounds with the strongest electron-phonon coupling we examine the softening of the in-plane boron phonon mode at Γ\Gamma in a large class of metal borides. Our results reveal interesting general trends for the frequency of the in-plane boron phonon modes as a function of the boron-boron bond length and the valence of the metal. One of the candidates with a promise to be an MgB2_2-type superconductor, Li2_2AlB4_4, has been examined in more detail: according to our {\it ab initio} calculations of the phonon dispersion and the electron-phonon coupling λ\lambda, the compound should have a critical temperature of 4\sim4 K.Comment: 10 pages, 9 figures, submitted to PR

    Ab initio study of the thermodynamic properties of rare-earthmagnesium intermetallics MgRE (RE=Y, Dy, Pr, Tb)

    Full text link
    We have performed an ab initio study of the thermodynamical properties of rare-earth-magnesium intermetallic compounds MgRE (RE=Y, Dy, Pr, Tb) with CsCl-type B2-type structures. The calculations have been carried out the density functional theory and density functional perturbation theory in combination with the quasiharmonic approximation. The phonon-dispersion curves and phonon total and partial density of states have been investigated. Our results show that the contribution of RE atoms is dominant in phonon frequency, and this character agrees with the previous discussion by using atomistic simulations. The temperature dependence of various quantities such as the thermal expansions, bulk modulus, and the heat capacity are obtained. The electronic contributions to the specific heat are discussed, and found to be important for the calculated MgRE intermetallics.Comment: 12 pages, 6 figure

    First-principles prediction of a decagonal quasicrystal containing boron

    Full text link
    We interpret experimentally known B-Mg-Ru crystals as quasicrystal approximants. These approximant structures imply a deterministic decoration of tiles by atoms that can be extended quasiperiodically. Experimentally observed structural disorder corresponds to phason (tile flip) fluctuations. First-principles total energy calculations reveal that many distinct tilings lie close to stability at low temperatures. Transfer matrix calculations based on these energies suggest a phase transition from a crystalline state at low temperatures to a high temperature state characterized by tile fluctuations. We predict B38_{38}Mg17_{17}Ru45_{45} forms a decagonal quasicrystal that is metastable at low temperatures and may be thermodynamically stable at high temperatures.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Correlation energies by the generator coordinate method: computational aspects for quadrupolar deformations

    Full text link
    We investigate truncation schemes to reduce the computational cost of calculating correlations by the generator coordinate method based on mean-field wave functions. As our test nuclei, we take examples for which accurate calculations are available. These include a strongly deformed nucleus, 156Sm, a nucleus with strong pairing, 120Sn, the krypton isotope chain which contains examples of soft deformations, and the lead isotope chain which includes the doubly magic 208Pb. We find that the Gaussian overlap approximation for angular momentum projection is effective and reduces the computational cost by an order of magnitude. Cost savings in the deformation degrees of freedom are harder to realize. A straightforward Gaussian overlap approximation can be applied rather reliably to angular-momentum projected states based on configuration sets having the same sign deformation (prolate or oblate), but matrix elements between prolate and oblate deformations must be treated with more care. We propose a two-dimensional GOA using a triangulation procedure to treat the general case with both kinds of deformation. With the computational gains from these approximations, it should be feasible to carry out a systematic calculation of correlation energies for the nuclear mass table.Comment: 11 pages revtex, 9 eps figure

    Dirac semimetal in three dimensions

    Get PDF
    In a Dirac semimetal, the conduction and valence bands contact only at discrete (Dirac) points in the Brillouin zone (BZ) and disperse linearly in all directions around these critical points. Including spin, the low energy effective theory around each critical point is a four band Dirac Hamiltonian. In two dimensions (2D), this situation is realized in graphene without spin-orbit coupling. 3D Dirac points are predicted to exist at the phase transition between a topological and a normal insulator in the presence of inversion symmetry. Here we show that 3D Dirac points can also be protected by crystallographic symmetries in particular space-groups and enumerate the criteria necessary to identify these groups. This reveals the possibility of 3D analogs to graphene. We provide a systematic approach for identifying such materials and present ab initio calculations of metastable \beta-cristobalite BiO_2 which exhibits Dirac points at the three symmetry related X points of the BZ.Comment: 6 pages, 4 figure

    Optical properties of the Ce and La di-telluride charge density wave compounds

    Full text link
    The La and Ce di-tellurides LaTe2_2 and CeTe2_2 are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state

    Theoretical study of metal borides stability

    Full text link
    We have recently identified metal-sandwich (MS) crystal structures and shown with ab initio calculations that the MS lithium monoboride phases are favored over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73, 180501(R) (2006)]. According to previous studies synthesized lithium monoboride tends to be boron-deficient, however the mechanism leading to this phenomenon is not fully understood. We propose a simple model that explains the experimentally observed off-stoichiometry and show that compared to such boron-deficient phases the MS-LiB compounds still have lower formation enthalpy under high pressures. We also investigate stability of MS phases for a large class of metal borides. Our ab initio results suggest that MS noble metal borides are less unstable than the corresponding AlB2_2-type phases but not stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure

    Automated computation of materials properties

    Full text link
    Materials informatics offers a promising pathway towards rational materials design, replacing the current trial-and-error approach and accelerating the development of new functional materials. Through the use of sophisticated data analysis techniques, underlying property trends can be identified, facilitating the formulation of new design rules. Such methods require large sets of consistently generated, programmatically accessible materials data. Computational materials design frameworks using standardized parameter sets are the ideal tools for producing such data. This work reviews the state-of-the-art in computational materials design, with a focus on these automated ab-initio\textit{ab-initio} frameworks. Features such as structural prototyping and automated error correction that enable rapid generation of large datasets are discussed, and the way in which integrated workflows can simplify the calculation of complex properties, such as thermal conductivity and mechanical stability, is demonstrated. The organization of large datasets composed of ab-initio\textit{ab-initio} calculations, and the tools that render them programmatically accessible for use in statistical learning applications, are also described. Finally, recent advances in leveraging existing data to predict novel functional materials, such as entropy stabilized ceramics, bulk metallic glasses, thermoelectrics, superalloys, and magnets, are surveyed.Comment: 25 pages, 7 figures, chapter in a boo

    Remarks on monopole charge properties within the Generalized Coherent State Model

    Get PDF
    The Generalized Coherent State Model, proposed previously for a unified description of magnetic and electric collective properties of nuclear systems, is used to study the ground state band charge density as well as the E0 transitions from 0β+0^+_{\beta} to 0g+0^+_g. The influence of the nuclear deformation and of angular momentum projection on the charge density is investigated. The monopole transition amplitude has been calculated for ten nuclei. The results are compared with some previous theoretical studies and with the available experimental data. Our results concerning angular momentum projection are consistent with those of previous microscopic calculations for the ground state density. The calculations for the E0 transitions agree quite well with the experimental data. Issues like how the shape transitions or shape coexistence are reflected in the ρ(E0)\rho(E0) behavior are also addressed.Comment: 32 pages, 7 figure
    corecore