19 research outputs found

    Genome-Wide Association of Implantable Cardioverter-Defibrillator Activation With Life-Threatening Arrhythmias

    Get PDF
    OBJECTIVES: To identify genetic factors that would be predictive of individuals who require an implantable cardioverter-defibrillator (ICD), we conducted a genome-wide association study among individuals with an ICD who experienced a life-threatening arrhythmia (LTA; cases) vs. those who did not over at least a 3-year period (controls). BACKGROUND: Most individuals that receive implantable cardioverter-defibrillators never experience a life-threatening arrhythmia. Genetic factors may help identify who is most at risk. METHODS: Patients with an ICD and extended follow-up were recruited from 34 clinical sites with the goal of oversampling those who had experienced LTA, with a cumulative 607 cases and 297 controls included in the analysis. A total of 1,006 Caucasian patients were enrolled during a time period of 13 months. Arrhythmia status of 904 patients could be confirmed and their genomic data were included in the analysis. In this cohort, there were 704 males, 200 females, and the average age was 73.3 years. We genotyped DNA samples using the Illumina Human660 W Genotyping BeadChip and tested for association between genotype at common variants and the phenotype of having an LTA. RESULTS AND CONCLUSIONS: We did not find any associations reaching genome-wide significance, with the strongest association at chromosome 13, rs11856574 at Pβ€Š=β€Š5Γ—10⁻⁢. Loci previously implicated in phenotypes such as QT interval (measure of the time between the start of the Q wave and the end of the T wave as measured by electrocardiogram) were not found to be significantly associated with having an LTA. Although powered to detect such associations, we did not find common genetic variants of large effect associated with having a LTA in those of European descent. This indicates that common gene variants cannot be used at this time to guide ICD risk-stratification. TRIAL REGISTRATION: ClinicalTrials.gov NCT00664807

    Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals

    Get PDF
    Abstract Background Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1–2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of diabetes for mutations in disease-associated genes. Methods We utilized a targeted sequencing approach using the Illumina HiSeq to perform a case-control sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346 individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants identified from the sequence data and compared the frequencies of pathogenic variants (protein-truncating variants and missense variants) between the cases and controls. Results A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group) were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCC8, and INS genes. In addition, heterozygous protein truncating mutations were detected in the GCK, HNF1A, and HNF1B genes in seven individuals with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was homozygous for a rare pathogenic missense variant in the WFS1 gene but did not have the additional phenotypes associated with Wolfram syndrome. Conclusion Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed, particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a specific diagnosis, inform disease prognosis and may help to better stratify treatment plans

    Additional file 1: Table S1. of Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals

    No full text
    List of 22 genes associated with monogenic forms of diabetes that were analyzed in this paper. Table S2. Criteria used to select genes for targeted sequencing. Table S3. Summary of samples sequenced in Stages 1, 2, and 3, and the coding variants identified in each stage. Table S4. Clinical data of the cases and controls for type 2 diabetes sequenced in this study. Table S5. List of all protein truncating mutations identified in the 22 monogenic diabetes genes. Table S6. Rare missense mutations in the HNF1A, HNF4A, HNF1B, ABCC8, and KCNJ11 genes predicted to be deleterious by PolyPhen2, SIFT, and MutationTaster. Table S7. Number of individuals with protein truncating variants and previously reported pathogenic missense variants in MODY genes. Table S8. List of exons with low sequence coverage in data from Stage 1 and 2 pools. Figure S1. Minor allele frequency distribution of variants identified from sequencing of pools in Stages 1 and 2. Figure S2. Pooled sequencing design of the study. Figure S3. Comparison of sequence coverage between cases and controls. (PDF 700 kb

    Additional file 1: Table S1. of Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals

    No full text
    List of 22 genes associated with monogenic forms of diabetes that were analyzed in this paper. Table S2. Criteria used to select genes for targeted sequencing. Table S3. Summary of samples sequenced in Stages 1, 2, and 3, and the coding variants identified in each stage. Table S4. Clinical data of the cases and controls for type 2 diabetes sequenced in this study. Table S5. List of all protein truncating mutations identified in the 22 monogenic diabetes genes. Table S6. Rare missense mutations in the HNF1A, HNF4A, HNF1B, ABCC8, and KCNJ11 genes predicted to be deleterious by PolyPhen2, SIFT, and MutationTaster. Table S7. Number of individuals with protein truncating variants and previously reported pathogenic missense variants in MODY genes. Table S8. List of exons with low sequence coverage in data from Stage 1 and 2 pools. Figure S1. Minor allele frequency distribution of variants identified from sequencing of pools in Stages 1 and 2. Figure S2. Pooled sequencing design of the study. Figure S3. Comparison of sequence coverage between cases and controls. (PDF 700 kb

    Additional file 2: of Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals

    No full text
    Supplementary Methods: Description of methods for pooled variant calling, gene-level tests for rare coding variants, statistical analyses, comparison of pooled sequence data with population exome data, comparison of pooled allele counts with individual genotypes, and identification of the carriers of rare variants. (PDF 671 kb

    Top regions associated at P<10<sup>βˆ’5</sup>.

    No full text
    <p>*imputed; #SNPs at P<10<sup>βˆ’4</sup> indicates the number of SNPs at P<10<sup>βˆ’4</sup> within +/βˆ’150 kb of the top SNP that were either directly genotyped or imputed (genotyped/imputed).</p
    corecore