7,523 research outputs found

    Geometric phases in open systems: an exact model to study how they are corrected by decoherence

    Get PDF
    We calculate the geometric phase for an open system (spin-boson model) which interacts with an environment (ohmic or nonohmic) at arbitrary temperature. However there have been many assumptions about the time scale at which the geometric phase can be measured, there has been no reported observation yet for mixed states under nonunitary evolution. We study not only how they are corrected by the presence of the different type of environments but also estimate the corresponding times at which decoherence becomes effective. These estimations should be taken into account when planning experimental setups to study the geometric phase in the nonunitary regime, particularly important for the application of fault-tolerant quantum computation.Comment: Revtex 4, 5 pages, one eps figure. Version Publishe

    Direct Production of Tripartite Pump-Signal-Idler Entanglement in the Above-Threshold Optical Parametric Oscillator

    Get PDF
    We calculate the quantum correlations existing among the three output fields (pump, signal, and idler) of a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold. By applying the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we show that strong tripartite continuous-variable entanglement is present in this well-known and simple system. Furthermore, since the entanglement is generated directly from a nonlinear process, the three entangled fields can have very different frequencies, opening the way for multicolored quantum information networks.Comment: 4 pages, 3 figure

    Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    Full text link
    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Initial activities underground were measured and then production rates at sea level were estimated following the history of detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of 3H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of 3H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 keV in NaI detectors.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop, March 2015, Seattle (US

    Background analysis and status of the ANAIS dark matter project

    Full text link
    ANAIS (Annual modulation with NaI Scintillators) is a project aiming to set up at the new facilities of the Canfranc Underground Laboratory (LSC), a large scale NaI(Tl) experiment in order to explore the DAMA/LIBRA annual modulation positive result using the same target and technique. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra took data at the LSC in the ANAIS-25 set-up. The comparison of the background model for the ANAIS-25 prototypes with the experimental results is presented. ANAIS crystal radiopurity goals have been achieved for Th-232 and U-238 chains, but a Pb-210 contamination out-of-equilibrium was identified, whose origin has been studied. The high light collection efficiency obtained with these prototypes allows to anticipate an energy threshold of the order of 1 keVee. A new detector, with improved performances, was received in March 2015 and very preliminary results are shown.Comment: 6 pages, 7 figure

    Dynamical Casimir effect in superconducting circuits: a numerical approach

    Get PDF
    We present a numerical analysis of the particle creation for a quantum field in the presence of time dependent boundary conditions. Having in mind recent experiments involving superconducting circuits, we consider their description in terms of a scalar field in a one dimensional cavity satisfying generalized boundary conditions that involve a time-dependent linear combination of the field and its spatial and time derivatives. We evaluate numerically the Bogoliubov transformation between {\it in} and {\it out}-states and find that the rate of particle production strongly depends on whether the spectrum of the unperturbed cavity is equidistant or not, and also on the amplitude of the temporal oscillations of the boundary conditions. We provide analytic justifications for the different regimes found numerically.Comment: 20 pages. 11 figure

    Status of the ANAIS Dark Matter Project at the Canfranc Underground Laboratory

    Full text link
    The ANAIS experiment aims at the confirmation of the DAMA/LIBRA signal. A detailed analysis of two NaI(Tl) crystals of 12.5 kg each grown by Alpha Spectra will be shown: effective threshold at 1 keVee is at reach thanks to outstanding light collection and robust PMT noise filtering protocols and the measured background is well understood down to 3 keVee, having quantified K, U and Th content and cosmogenic activation in the crystals. A new detector was installed in Canfranc in March 2015 together with the two previous modules and preliminary characterization results will be presented. Finally, the status and expected sensitivity of the full experiment with 112 kg will be reviewed.Comment: Contributed to the 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 22 to 26, 201

    Preliminary results of ANAIS-25

    Get PDF
    The ANAIS (Annual Modulation with NaI(Tl) Scintillators) experiment aims at the confirmation of the DAMA/LIBRA signal using the same target and technique at the Canfranc Underground Laboratory. 250 kg of ultrapure NaI(Tl) crystals will be used as a target, divided into 20 modules, each coupled to two photomultipliers. Two NaI(Tl) crystals of 12.5 kg each, grown by Alpha Spectra from a powder having a potassium level under the limit of our analytical techniques, form the ANAIS-25 set-up. The background contributions are being carefully studied and preliminary results are presented: their natural potassium content in the bulk has been quantified, as well as the uranium and thorium radioactive chains presence in the bulk through the discrimination of the corresponding alpha events by PSA, and due to the fast commissioning, the contribution from cosmogenic activated isotopes is clearly identified and their decay observed along the first months of data taking. Following the procedures established with ANAIS-0 and previous prototypes, bulk NaI(Tl) scintillation events selection and light collection efficiency have been also studied in ANAIS-25.Comment: 4 pages, 6 Figure

    Bulk NaI(Tl) scintillation low energy events selection with the ANAIS-0 module

    Get PDF
    Dark matter particles scattering off some target nuclei are expected to deposit very small energies in form of nuclear recoils (below 100 keV). Because of the low scintillation efficiency for nuclear recoils vs. electron recoils, in most of the scintillating targets considered in the search for dark matter, the region below 10 keVee concentrates most of the expected dark matter signal. For this reason, very low energy threshold (at or below 2 keVee) and very low background are required. This is the case of the ANAIS (Annual modulation with NaI Scintillators) experiment. A good knowledge of the detector response function for real scintillation events, a good characterization of other anomalous or noise event populations contributing in that energy range, and the development of convenient filtering procedures for the latter are mandatory to achieve the required low background at such a low energy. In this work we will present the specific protocols developed to select bulk scintillation events in NaI(Tl), and its application to data obtained with the ANAIS-0 prototype. Slight differences in time constants are expected in scintillation pulses produced by nuclear or electron recoils in NaI(Tl), so in order to analyze the effect of these filtering procedures in the case of a recoil population attributable to dark matter, data from a neutron calibration have been used.Comment: 13 pages, 22 figure

    Light yield determination in large sodium iodide detectors applied in the search for dark matter

    Get PDF
    Application of NaI(Tl) detectors in the search for galactic dark matter particles through their elastic scattering off the target nuclei is well motivated because of the long standing DAMA/LIBRA highly significant positive result on annual modulation, still requiring confirmation. For such a goal, it is mandatory to reach very low threshold in energy (at or below the keV level), very low radioactive background (at a few counts/keV/kg/day), and high detection mass (at or above the 100 kg scale). One of the most relevant technical issues is the optimization of the crystal intrinsic scintillation light yield and the efficiency of the light collecting system for large mass crystals. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project large NaI(Tl) crystals from different providers coupled to two photomultiplier tubes (PMTs) have been tested at the Canfranc Underground Laboratory. In this paper we present the estimates of the NaI(Tl) scintillation light collected using full-absorption peaks at very low energy from external and internal sources emitting gammas/electrons, and single-photoelectron events populations selected by using very low energy pulses tails. Outstanding scintillation light collection at the level of 15~photoelectrons/keV can be reported for the final design and provider chosen for ANAIS detectors. Taking into account the Quantum Efficiency of the PMT units used, the intrinsic scintillation light yield in these NaI(Tl) crystals is above 40~photoelectrons/keV for energy depositions in the range from 3 up to 25~keV. This very high light output of ANAIS crystals allows triggering below 1~keV, which is very important in order to increase the sensitivity in the direct detection of dark matter
    corecore