80 research outputs found

    Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles

    Full text link
    [EN] Novel Janus nanoparticles with Au and mesoporous silica faces on opposite sides were prepared using a Pickering emulsion template with paraffin wax as the oil phase. These anisotropic colloids were employed as integrated sensing-actuating nanomachines for enzyme-controlled stimuli-responsive cargo delivery. As a proof of concept, we demonstrated the successful use of the Janus colloids for controlled delivery of tris(2,2'-bipyridyl) ruthenium(II) chloride from the mesoporous silica face, which was grafted with pH-sensitive gatelike scaffoldings. The release was mediated by the on-demand catalytic decomposition of urea by urease, which was covalently immobilized on the Au face.R. V. acknowledges a Ramon & Cajal contract from the Spanish Ministry of Science and Innovation. Financial support from the Spanish Ministry of Science and Innovation CTQ2011-24355, CTQ2009-12650, CTQ2009-09351, MAT2009-14564-C04-01, MAT2012-38429-C04-01 and Comunidad de Madrid S2009/PPQ-1642, programme AVANSENS, is gratefully acknowledged. The Generalitat Valencia (project PROMETEO/2009/016) is also acknowledged.Villalonga, R.; Díez, P.; Sánchez, A.; Aznar, E.; Martínez-Máñez, R.; Pingarrón, J. (2013). Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chemistry - A European Journal. 19(24):7889-7894. https://doi.org/10.1002/chem.201300723S788978941924Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., & Duguet, E. (2005). Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry, 15(35-36), 3745. doi:10.1039/b505099eJiang, S., Chen, Q., Tripathy, M., Luijten, E., Schweizer, K. S., & Granick, S. (2010). Janus Particle Synthesis and Assembly. Advanced Materials, 22(10), 1060-1071. doi:10.1002/adma.200904094Lattuada, M., & Hatton, T. A. (2011). Synthesis, properties and applications of Janus nanoparticles. Nano Today, 6(3), 286-308. doi:10.1016/j.nantod.2011.04.008Tang, J. L., Schoenwald, K., Potter, D., White, D., & Sulchek, T. (2012). Bifunctional Janus Microparticles with Spatially Segregated Proteins. Langmuir, 28(26), 10033-10039. doi:10.1021/la3010079Kim, J.-W., Lee, D., Shum, H. C., & Weitz, D. A. (2008). Colloid Surfactants for Emulsion Stabilization. Advanced Materials, 20(17), 3239-3243. doi:10.1002/adma.200800484Synytska, A., Khanum, R., Ionov, L., Cherif, C., & Bellmann, C. (2011). Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles. ACS Applied Materials & Interfaces, 3(4), 1216-1220. doi:10.1021/am200033uHowse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R., & Golestanian, R. (2007). Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters, 99(4). doi:10.1103/physrevlett.99.048102YOSHIDA, M., ROH, K., & LAHANN, J. (2007). Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomaterials, 28(15), 2446-2456. doi:10.1016/j.biomaterials.2007.01.048Salem, A. K., Searson, P. C., & Leong, K. W. (2003). Multifunctional nanorods for gene delivery. Nature Materials, 2(10), 668-671. doi:10.1038/nmat974Zhang, L., Zhang, F., Dong, W.-F., Song, J.-F., Huo, Q.-S., & Sun, H.-B. (2011). Magnetic-mesoporous Janus nanoparticles. Chem. Commun., 47(4), 1225-1227. doi:10.1039/c0cc03946bLee, J. E., Lee, N., Kim, T., Kim, J., & Hyeon, T. (2011). Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 44(10), 893-902. doi:10.1021/ar2000259Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499dCandel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727fZhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831uFeng, Y., He, J., Wang, H., Tay, Y. Y., Sun, H., Zhu, L., & Chen, H. (2012). An Unconventional Role of Ligand in Continuously Tuning of Metal–Metal Interfacial Strain. Journal of the American Chemical Society, 134(4), 2004-2007. doi:10.1021/ja211086yChen, T., Chen, G., Xing, S., Wu, T., & Chen, H. (2010). Scalable Routes to Janus Au−SiO2and Ternary Ag−Au−SiO2Nanoparticles. Chemistry of Materials, 22(13), 3826-3828. doi:10.1021/cm101155vHong, L., Jiang, S., & Granick, S. (2006). Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir, 22(23), 9495-9499. doi:10.1021/la062716zPerro, A., Meunier, F., Schmitt, V., & Ravaine, S. (2009). Production of large quantities of «Janus» nanoparticles using wax-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1), 57-62. doi:10.1016/j.colsurfa.2008.08.027Rodríguez-Fernández, D., Pérez-Juste, J., Pastoriza-Santos, I., & Liz-Marzán, L. M. (2012). Colloidal Synthesis of Gold Semishells. ChemistryOpen, 1(2), 90-95. doi:10.1002/open.201200002Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir, 17(22), 6782-6786. doi:10.1021/la0104323FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0Ghosh, S. K., & Pal, T. (2007). Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews, 107(11), 4797-4862. doi:10.1021/cr0680282Jaroniec, C. P., Kruk, M., Jaroniec, M., & Sayari, A. (1998). Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes. The Journal of Physical Chemistry B, 102(28), 5503-5510. doi:10.1021/jp981304zJaroniec, C. P., Gilpin, R. K., & Jaroniec, M. (1997). Adsorption and Thermogravimetric Studies of Silica-Based Amide Bonded Phases. The Journal of Physical Chemistry B, 101(35), 6861-6866. doi:10.1021/jp964002aInnocenzi, P., Kozuka, H., & Yoko, T. (1997). Fluorescence Properties of the Ru(bpy)32+Complex Incorporated in Sol−Gel-Derived Silica Coating Films. The Journal of Physical Chemistry B, 101(13), 2285-2291. doi:10.1021/jp970004zStefanescu, M., Stoia, M., & Stefanescu, O. (2006). Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix. Journal of Sol-Gel Science and Technology, 41(1), 71-78. doi:10.1007/s10971-006-0118-5Ammam, M., & Easton, E. B. (2012). Novel organic–inorganic hybrid material based on tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate and Dawson-type tungstophosphate K7[H4PW18O62]·18H2O as a bifuctional hydrogen peroxide electrocatalyst for biosensors. Sensors and Actuators B: Chemical, 161(1), 520-527. doi:10.1016/j.snb.2011.10.070Leff, D. V., Brandt, L., & Heath, J. R. (1996). Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir, 12(20), 4723-4730. doi:10.1021/la960445uSahoo, B., Sahu, S. K., & Pramanik, P. (2011). A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of Molecular Catalysis B: Enzymatic, 69(3-4), 95-102. doi:10.1016/j.molcatb.2011.01.00

    Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors

    Get PDF
    Electrochemical immunosensors are antibody-based affinity biosensors with a high impact on clinical, environmental, food, and pharmaceutical analysis. In general, the analytical performance of these devices is critically determined by the materials and reagents used for their construction, signal production and amplification. Dendrimers are monodisperse and highly branched polymers with three-dimensional structures widely employed as “soft” nanomaterials in electrochemical immunosensor technology. This review provides an overview on the state-of-the-art in dendrimer-based electrochemical immunosensors, focusing on those using polyamidoamine and poly (propylene imine) dendrimers. Special emphasis is given to the most original methods recently reported for the construction of immunosensor architectures incorporating dendrimers, as well as to novel sensing approaches based on dendrimer-assisted signal enhancement strategies

    A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters: The Example of Urea Detection

    Full text link
    "This is the peer reviewed version of the following article: Llopis-Lorente, Antoni, Reynaldo Villalonga, M. Dolores Marcos, Ramón Martínez-Máñez, and Félix Sancenón. 2018. A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme‐Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry A European Journal 25 (14). Wiley: 3575 81. doi:10.1002/chem.201804706. , which has been published in final form at https://doi.org/10.1002/chem.201804706. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Here, a new bio-inspired nanoarchitectonics approach for the design of optical probes is presented. It is based on nanodevices that combine 1) an enzymatic receptor subunit, 2) a signaling subunit (consisting of a labeled reporter attached to a silica surface), and 3) a mechanism of communication between the two sites based on the production of chemical messengers by the enzymatic subunit, which induces the detachment of the reporter molecules from the silica surface. As a proof of concept, a urea nanosensor based on the release of Alexa-Fluor-647-labeled oligonucleotide from enzyme-functionalized Janus gold-mesoporous-silica nanoparticles (Au-MSNPs) was developed. The Janus particles were functionalized on the silica face with amino groups to which the labeled oligonucleotides were attached by electrostatic interactions, whereas the gold face was used for grafting urease enzymes. The nanodevice was able to release the fluorescent oligonucleotide through the enzyme-mediated hydrolysis of urea to ammonia and the subsequent deprotonation of amino groups on the silica face. This simple nanodevice was applied for the fluorometric detection of urea in real human blood samples and for the identification of adulterated milk. Given the large variety of enzymes and reporter species that could be combined, this is a general new paradigm that could be applied to the design of a number of optical probes for the detection of target analytes.A.L.-L. is grateful to "La Caixa" Banking Foundation for his Ph.D. fellowship. The authors thank to the Spanish Government (MINECO Projects MAT2015-64139-C4-1, AGL2015-70235-C2-2-R, CTQ2014-58989-P and CTQ2015-71936-REDT) and the Generalitat Valencia (Projects PROMETEOII/2014/047, PROMETEO2018/024) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Villalonga, R.; Marcos Martínez, MD.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry - A European Journal. 25(14):3575-3581. https://doi.org/10.1002/chem.201804706S35753581251

    Sucrose-responsive intercommunicated janus nanoparticles network

    Get PDF
    [EN] Inspired by biological systems, the development of artificial nanoscale materials that communicate over a short distance is still at its early stages. This work shows a new example of a cooperating system with intercommunicated devices at the nanoscale. The system is based on the new sucrose-responsive Janus gold-mesoporous silica (Janus Au-MS) nanoparticles network with two enzyme-powered nanodevices. These nanodevices involve two enzymatic processes based on invertase and glucose oxidase, which are anchored on the Au surfaces of different Janus Au-MS nanoparticles, and N-acetyl-L-cysteine and [Ru(bpy)(3)](2+) loaded as chemical messengers, respectively. Sucrose acts as the INPUT, triggering the sequential delivery of two different cargoes through the enzymatic control. Nanoscale communication using abiotic nanodevices is a developing potential research field and may prompt several applications in different disciplines, such as nanomedicine.Financial support was provided by the Spanish Ministry of Economy and Competitiveness (MINECO Projects CTQ2017-87954-P). D.V. thanks MICINN for the Juan de la Cierva fellowship (IJC2018-035658-I). R.M.-M. thanks the Generalitat Valenciana (Project PROMETEO2018/024).Jiménez-Falcao, S.; Torres, D.; Martínez-Ruiz, P.; Vilela, D.; Martínez-Máñez, R.; Villalonga, R. (2021). Sucrose-responsive intercommunicated janus nanoparticles network. Nanomaterials. 11(10):1-11. https://doi.org/10.3390/nano11102492111111

    Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery

    Full text link
    [EN] Development of bioinspired nanomachines with an efficient propulsion and cargo-towing has attracted much attention in the last years due to their potential biosensing, diagnostics, and therapeutics applications. In this context, self-propelled synthetic nanomotors are promising carriers for intelligent and controlled release of therapeutic payloads. However, the implementation of this technology in real biomedical applications is still facing several challenges. Herein, we report the design, synthesis, and characterization of innovative multifunctional gated platinum¿mesoporous silica nanomotors constituted of a propelling element (platinum nanodendrite face), a drug-loaded nanocontainer (mesoporous silica nanoparticle face), and a disulfide-containing oligo(ethylene glycol) chain (S¿S¿PEG) as a gating system. These Janus-type nanomotors present an ultrafast self-propelled motion due to the catalytic decomposition of low concentrations of hydrogen peroxide. Likewise, nanomotors exhibit a directional movement, which drives the engines toward biological targets, THP-1 cancer cells, as demonstrated using a microchip device that mimics penetration from capillary to postcapillary vessels. This fast and directional displacement facilitates the rapid cellular internalization and the on-demand specific release of a cytotoxic drug into the cytosol, due to the reduction of the disulfide bonds of the capping ensemble by intracellular glutathione levels. In the microchip device and in the absence of fuel, nanomotors are neither able to move directionally nor reach cancer cells and deliver their cargo, revealing that the fuel is required to get into inaccessible areas and to enhance nanoparticle internalization and drug release. Our proposed nanosystem shows many of the suitable characteristics for ideal biomedical destined nanomotors, such as rapid autonomous motion, versatility, and stimuli-responsive controlled drug release.The authors want to thank the Spanish Government for RTI2018-100910-B-C41 (MCIU/AEI/FEDER, UE) and CTQ2017-87954-P projects and the Generalitat Valenciana for support by project PROMETEO/2018/024. P.D. thanks the Spanish government for her Juan de la Cierva postdoctoral fellowship. E.L.-S. thanks MINECO for her FPU fellowship. A.E. is also grateful for her Ph.D. grant by the Generalitat Valenciana.Diez-Sánchez, P.; Lucena-Sánchez, E.; Escudero-Noguera, A.; Llopis-Lorente, A.; Villalonga, R.; Martínez-Máñez, R. (2021). Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano. 15(3):4467-4480. https://doi.org/10.1021/acsnano.0c084044467448015

    Avidin-gated mesoporous silica nanoparticles for signal amplification in electrochemical biosensor

    Full text link
    [EN] We report herein a novel sensing strategy for electrochemical biosensors, by using mesoporous silica nanoparticles loaded with the redox probe methylene blue and capped with an avidin/imminobiotin stimulus-responsive gate-like ensemble as signal amplification element. As a proof of concept, an aptasensor for carcinoembryonic antigen (CEA) was constructed by attaching a biotin and thiol-functionalized anti-CEA DNA hairpin aptamer on gold nanoparticles modified carbon screen-printed electrodes. The biosensing approach relied on the unfolding of the aptamer molecule after specific recognition of CEA, unmasking the biotin residue and allowing further association with the avidin-capped mesoporous nanocarrier. Incubation with H2SO4 trigger the release of the encapsulated redox probe allowing the detection of the cancer biomarker from 1.0 pg/mL to 160 ng/mL.Financial support from the Spanish Ministry of Economy and Competitiveness (projects CTQ2014-58989-P, CTQ2015-71936-REDT, CTQ2017-87954-P and RTI2018-100910-B-C41, fellowship BES-2015-073565 to SJF) and the Generalitat Valencia (Project PROMETEO/2018/024) are gratefully acknowledged.Jimenez-Falcao, S.; Parra-Nieto, J.; Pérez-Cuadrado, H.; Martínez-Máñez, R.; Martínez-Ruiz, P.; Villalonga, R. (2019). Avidin-gated mesoporous silica nanoparticles for signal amplification in electrochemical biosensor. Electrochemistry Communications. 108:1-4. https://doi.org/10.1016/j.elecom.2019.1065561410

    A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation

    Full text link
    [EN] A biocomputing strategy implemented in hybrid nanocarriers for controlled cargo delivery is described. The nanodevice consists of enzyme-functionalized Janus Au-mesoporous silica nanoparticles, which behave as an electronic demultiplexer (DEMUX). The nanocarrier is capable of reading molecular information from the environment (lactose) and selecting one of two possible outputs (galactose production or 4-methylumbellilferone release and activation) depending on the presence of an addressing input NAD(+).The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE), CTQ2017-87954-P), the Generalitat Valenciana (PROMETEO 2018/024), the Comunidad de Madrid (IND2017/BMD-7642) and CIBER-BBN (NANOCOMMUNITY project) for support.De Luis-Fernández, B.; García-Fernández, A.; Llopis-Lorente, A.; Villalonga, R.; Sancenón Galarza, F.; Martínez-Máñez, R. (2020). A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. Chemical Communications. 56(69):9974-9977. https://doi.org/10.1039/d0cc03803bS997499775669Soto, F., & Chrostowski, R. (2018). Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Frontiers in Bioengineering and Biotechnology, 6. doi:10.3389/fbioe.2018.00170Zhang, X., Chen, L., Lim, K. H., Gonuguntla, S., Lim, K. W., Pranantyo, D., … Soh, S. (2019). The Pathway to Intelligence: Using Stimuli‐Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 31(11), 1804540. doi:10.1002/adma.201804540Mailloux, S., & Katz, E. (2014). Biocomputing, Biosensing and Bioactuation Based on Enzyme Biocatalyzed Reactions. Biocatalysis, 1(1). doi:10.2478/boca-2014-0002Katz, E. (2018). Boolean Logic Gates Realized with Enzyme‐catalyzed Reactions – Unusual Look at Usual Chemical Reactions. ChemPhysChem, 20(1), 9-22. doi:10.1002/cphc.201800900Erbas-Cakmak, S., Kolemen, S., Sedgwick, A. C., Gunnlaugsson, T., James, T. D., Yoon, J., & Akkaya, E. U. (2018). Molecular logic gates: the past, present and future. Chemical Society Reviews, 47(7), 2228-2248. doi:10.1039/c7cs00491eSu, H., Xu, J., Wang, Q., Wang, F., & Zhou, X. (2019). High-efficiency and integrable DNA arithmetic and logic system based on strand displacement synthesis. Nature Communications, 10(1). doi:10.1038/s41467-019-13310-2Orbach, R., Willner, B., & Willner, I. (2015). Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications. Chemical Communications, 51(20), 4144-4160. doi:10.1039/c4cc09874aArugula, M. A., Bocharova, V., Halámek, J., Pita, M., & Katz, E. (2010). Enzyme-Based Multiplexer and Demultiplexer. The Journal of Physical Chemistry B, 114(15), 5222-5226. doi:10.1021/jp101101bAndréasson, J., Straight, S. D., Bandyopadhyay, S., Mitchell, R. H., Moore, T. A., Moore, A. L., & Gust, D. (2007). A Molecule-Based 1:2 Digital Demultiplexer. The Journal of Physical Chemistry C, 111(38), 14274-14278. doi:10.1021/jp074429pTuran, I. S., Gunaydin, G., Ayan, S., & Akkaya, E. U. (2018). Molecular demultiplexer as a terminator automaton. Nature Communications, 9(1). doi:10.1038/s41467-018-03259-zOrbach, R., Remacle, F., Levine, R. D., & Willner, I. (2014). DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer. Chemical Science, 5(3), 1074. doi:10.1039/c3sc52752bLuo, C., Sun, J., Sun, B., & He, Z. (2014). Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends in Pharmacological Sciences, 35(11), 556-566. doi:10.1016/j.tips.2014.09.008Moreira, J., Hamraz, M., Abolhassani, M., Bigan, E., Pérès, S., Paulevé, L., … Schwartz, L. (2016). The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect. Metabolites, 6(4), 33. doi:10.3390/metabo6040033Adekola, K., Rosen, S. T., & Shanmugam, M. (2012). Glucose transporters in cancer metabolism. Current Opinion in Oncology, 24(6), 650-654. doi:10.1097/cco.0b013e328356da72Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482Guo, Z. (2017). The modification of natural products for medical use. Acta Pharmaceutica Sinica B, 7(2), 119-136. doi:10.1016/j.apsb.2016.06.003Llopis-Lorente, A., de Luis, B., García-Fernández, A., Jimenez-Falcao, S., Orzáez, M., Sancenón, F., … Martínez-Máñez, R. (2018). Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 10(31), 26494-26500. doi:10.1021/acsami.8b05920Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511Tregubov, A. A., Nikitin, P. I., & Nikitin, M. P. (2018). Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 118(20), 10294-10348. doi:10.1021/acs.chemrev.8b0019

    Gold nanoparticles/silver-bipyridine hybrid nanobelts with tuned peroxidase-like activity

    Get PDF
    Gold nanoparticles-decorated silver-bipyridine coordination polymers with intrinsic peroxidase-like activity are reported. Both morphology and mimetic enzyme activity can be tuned by rational manipulation of the nanohybrid composition. The nanomaterial was used for the electrochemical determination of H2O2 and glucose
    corecore