22 research outputs found

    First critical field measurements of superconducting films by third harmonic analysis

    Full text link
    The temperature behaviour of the first critical field (BC1B_{C1}) of superconducting thin film samples can be determined with high accuracy using an inductive and contactless method. Driving a sinusoidal current in a single coil placed in front of the sample, a non zero third harmonic voltage V3V_{3} is induced in it when Abrikosov vortices enter the sample. Conditions to be satisfied for the quantitative evaluation of BC1B_{C1} using this technique are detailed. As validation test, different type II superconductors (Nb, NbN, MgB2_{2} and Y1_{1}Ba2_{2}Cu3_{3}O7d_{7-d} under the form of thin films) have been measured. The comparison between experimental results, data presented in literature and theoretical predictions is presented and discussed.Comment: to be published in Journal of Applied Physic

    In-situ measurement of the permittivity of helium using microwave NbN resonators

    Full text link
    By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementation a 103\sim10^{-3} mm3^3 sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be 6×\sim6\times101110^{-11} ϵ0\epsilon_0/Hz1/2^{1/2} with a sensitivity of order 101310^{-13} ϵ0\epsilon_0/Hz1/2^{1/2} easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.Comment: 4 pages, 3 figure

    Granularity-induced gapless superconductivity in NbN films: evidence of thermal phase fluctuations

    Full text link
    Using a single coil mutual inductance technique, we measure the low temperature dependence of the magnetic penetration depth in superconducting NbN films prepared with similar critical temperatures around 16 K but with different microstructures. Only (100) epitaxial and weakly granular (100) textured films display the characteristic exponential dependence of conventional BCS s-wave superconductors. More granular (111) textured films exhibit a linear dependence, indicating a gapless state in spite of the s-wave gap. This result is quantitatively explained by a model of thermal phase fluctuations favored by the granular structure.Comment: 10 pages, 4 figures, to appear in Phys. Rev.

    Tantalum superconducting tunnel junctions for photon counting detectors

    No full text
    This paper presents the fabrication of Ta Superconducting Tunnel Junction detector working at 0.2 K to be used for photon counting instruments in astronomical applications. We would like to operate this type of detectors up to 2.5 Mm with a moderate energy resolution in order to offer innovative instrumental perspectives to the astronomical community. The Ta junction fabrication and characterization as well as photon counting experiments in the near-infrared are presented. Fabrication process improvements are discussed at the end of this paper

    High-Tc superconducting microbolometer for terahertz applications

    No full text
    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices

    Fabrication of high-speed single photon detectors in NbN for quantum information processing

    No full text
    International audienceAbstract. We describe the collective fabrication and characterization of superconducting single photon detectors (SSPD) made of a superconducting NbN meander, suitable for near-infrared applications. The NbN layer acting as the photon absorber is deposited epitaxially on a three inch diameter R-plane Sapphire heated substrate by DC-Magnetron sputtering from a Nb target in a reactive mixture of nitrogen and argon gas. Very thin NbN (~4 nm) films superconducting up to 12 K with a rather large critical current density are in-situ covered by a 1.4 nm thick room temperature sputtered AlN layer protecting NbN from oxidation. Two reliable patterning processes has been developed successfully, one based on electron beam lithography, the second based on selective NbN film anodization under an AFM tip. The filling factor obtained with 150 nm wide stripes in the meander pixel is about 0.5 with e-beam lithography and improved up to 0.8 with AFM patterning. In order to achieve an improved optical coupling of the SSPD by using wafers integrating ion implanted IR waveguides, growth studies of NbN layers have been focused on R-plane Sapphire and silicon substrates. We present optical and superconducting properties of NbN layers by FTIR, ellipsometry and STM

    New developments in textured and epitaxial NbN superconducting layers for ultimate sensors and RSFQ digital circuits

    No full text
    Nitride superconductors and specially niobium nitride are key materials for developing high performance optoelectronic and digital circuits. We are presenting a way to achieve such high frequency devices on R-plane sapphire or MgO substrates. Deposition of thin and flat NbN films with Te above 10 K, low and reproducible penetration depth ( L 250 nm) and surface resistance (Rs) values up to I THz, is required and obtained by sputtering on a substrate heated in the 300-600 °C range. Simple sub-micrometer size HEB bridge structures where patterned even in a very thin (2-5 nm thick) NbN layers offering relaxation times below 30 ps. It is then possible to achieve fast optoelectronic data links and sensors on-chip with high clock frequency NbN RSFQ digital circuits
    corecore