10 research outputs found

    Platelets Mitochondrial Function Depends on Coenzyme Q10 Concentration in Human Young, Not in Elderly Subjects

    Get PDF
    Ageing is characterized by a progressive decline in the physiological functions of various organs. Mitochondrial alterations occurring in senescence. Antioxidants, including coenzyme Q10 concentration, fall with ageing and contribute to enhanced oxidative stress age-related diseases. The impairment of platelet mitochondrial function occurs in a broad spectrum of diseases. The aim of this study was to evaluate mitochondrial function in platelets in elderly and young human controls and correlate it with a concentration of coenzyme Q10. Platelets mitochondrial function was determined by the use of High-Resolution Respirometry method.We did not find significantly decreased platelet mitochondrial function in elderly subjects. Dependence of platelets mitochondrial respiratory chain function and ATP production at Complex I on a concentration of coenzyme Q10 in platelets and whole blood in young not in elderly human volunteers was documented. This dependence was not found for Complex II in any group. Platelet mitochondrial coenzyme Q10 concentration was insufficient for improving platelet mitochondrial function in elderly human subjects. Recommending supplementation with coenzyme Q10 in elderly and aged humans is waranted.High-Resolution Respirometry method offers a perspective to diagnose mitochondrial energy metabolism which might be useful for further studies in patients with mitochondrial disorders. Our results could contribute to the explanation of platelets mitochondrial function in elderly and aged human subjects

    Coenzyme Q10 Modulates Remodeling Possibly by Decreasing Angiotensin-Converting Enzyme in Patients with Acute Coronary Syndrome

    No full text
    The study aims to examine the effects of coenzyme Q10, (a bioenergetic antioxidant), on the indexes of left ventricular remodeling, oxidative damage, and angiotensin-converting enzyme (ACE) level after acute myocardial infarction (AMI) with left ventricular dysfunction. In a double blind, randomized, placebo-controlled, parallel group study (a retrospective analysis of an earlier trial) in 55 patients with left ventricular ejection fraction <50% after AMI, the effects of coenzyme Q10 (120 mg/day) or placebo were studied for 24 weeks. Two-dimensional echocardiography was performed at discharge, (approximately 5–10 days after admission) and at 6 months after AMI. The results revealed that wall thickness opposite the site of infarction decreased from (mean ± standard deviation (SD)) 12.2 ± 2.0 mm to 10.0 ± 1.8 mm with coenzyme Q10 compared with 12.8 ± 2.2 mm to 13.3 ± 2.3 mm with placebo (p < 0.01). Left ventricular mass changed from 236 ± 72 g to 213 ± 61 g with coenzyme Q10 compared with 230 ± 77 g to 255 ± 86 g with placebo (p < 0.01). Treatment with coenzyme Q10 also prevented alteration of sphericity index which is a ratio of the long and short axis of the left ventricle (which changed from 1.61 ± 0.28 to 1.63 ± 0.30 with coenzyme Q10 compared with 1.61 ± 0.32 to 1.41 ± 0.31 with placebo (p < 0.05)). Coenzyme Q10 also prevented alteration of the wall thickening abnormality at the infarct site, which changed from 9.4 ± 3.0 cm2 to 9.1 ± 2.8 cm2 compared with 10.1 ± 3.1 to 13.7 ± 4.2 cm2 with placebo (p < 0.05). End diastolic and systolic volumes also showed significant reduction with coenzyme Q10 compared to placebo. The serum level of ACE showed significant decline in the coenzyme Q10 group compared to the control group. Treatment with coenzyme Q10 early after AMI causes attenuation of left ventricular remodeling and decreases the serum ACE level in patients with left ventricular dysfunction

    Coenzyme Q10, α-Tocopherol, and Oxidative Stress Could Be Important Metabolic Biomarkers of Male Infertility

    No full text
    Oxidative stress, decreased antioxidant capacity, and impaired sperm mitochondrial function are the main factors contributing to male infertility. The goal of the present study was to assess the effect of the per os treatment with Carni-Q-Nol (440 mg L-carnitine fumarate + 30 mg ubiquinol + 75 IU vitamin E + 12 mg vitamin C in each softsule) in infertile men on sperm parameters, concentration of antioxidants (coenzyme Q10,  CoQ10-TOTAL, γ, and α-tocopherols), and oxidative stress in blood plasma and seminal fluid. Forty infertile men were supplemented daily with two or three Carni-Q-Nol softsules. After 3 and 6 months of treatment, improved sperm density was observed (by 48.9% and 80.9%, resp.) and after 3-month treatment the sperm pathology decreased by 25.8%. Concentrations of CoQ10-TOTAL (ubiquinone + ubiquinol) and α-tocopherol were significantly increased and the oxidative stress was decreased. In conclusion, the effect of supplementary therapy with Carni-Q-Nol showed benefits on sperm function in men, resulting in 45% pregnancies of their women. We assume that assessment of oxidative stress, CoQ10-TOTAL, and α-tocopherol in blood plasma and seminal fluid could be important metabolic biomarkers in both diagnosis and treatment of male infertility

    Reduced platelet mitochondrial respiration and oxidative phosphorylation in patients with post COVID-19 syndrome are regenerated after spa rehabilitation and targeted ubiquinol therapy

    No full text
    European Association of Spa Rehabilitation recommend spa rehabilitation for patients with post COVID-19 syndrome (post C-19). We studied effects of special mountain spa rehabilitation program and its combination with ubiquinol (reduced form of coenzyme Q10—CoQ10) supplementation on pulmonary function, clinical symptoms, endogenous CoQ10 levels, and platelet mitochondrial bioenergetics of patients with post C-19. 36 patients with post C-19 enrolled for rehabilitation in mountain spa resort and 15 healthy volunteers representing the control group were included in this study. 14 patients with post C-19 (MR group) were on mountain spa rehabilitation lasting 16–18 days, 22 patients (MRQ group) were supplemented with ubiquinol (2 × 100 mg/day) during the rehabilitation and additional 12–14 days at home. Clinical symptoms and functional capacity of the lungs were determined in the patients before and after the spa rehabilitation program. Platelet bioenergetics by high-resolution respirometry, plasma TBARS concentration, and CoQ10 concentration in blood, plasma and platelets were evaluated before and after the spa rehabilitation program, and in 8 patients of MRQ group also after additional 12–14 days of CoQ10 supplementation. Pulmonary function and clinical symptoms improved after the rehabilitation program in both groups, 51.8% of symptoms disappeared in the MR group and 62.8% in the MRQ group. Platelet mitochondrial Complex I (CI)-linked oxidative phosphorylation (OXPHOS) and electron transfer (ET) capacity were markedly reduced in both groups of patients. After the rehabilitation program the improvement of these parameters was significant in the MRQ group and moderate in the MR group. CI-linked OXPHOS and ET capacity increased further after additional 12–14 days of CoQ10 supplementation. CoQ10 concentration in platelets, blood and plasma markedly raised after the spa rehabilitation with ubiquinol supplementation, not in non-supplemented group. In the MRQ group all parameters of platelet mitochondrial respiration correlated with CoQ10 concentration in platelets, and the increase in CI-linked OXPHOS and ET capacity correlated with the increase of CoQ10 concentration in platelets. Our data show a significant role of supplemented ubiquinol in accelerating the recovery of mitochondrial health in patients with post C-19. Mountain spa rehabilitation with coenzyme Q10 supplementation could be recommended to patients with post C-19. This study was registered as a clinical trial: ClinicalTrials.gov ID: NCT05178225.This study was supported by Comenius University in Bratislava, Medical Faculty, Slovakia; Ubiquinol was donated by Kaneka Pharma Europe, Brussels. Biochemical parameters were determined in Hospital of Dr. Vojtech Alexander in Kežmarok, High Tatras, Slovakia

    Mountain spa rehabilitation improved health of patients with post-COVID-19 syndrome: pilot study

    No full text
    European Association of Spa Rehabilitation (ESPA) recommends spa rehabilitation for patients with post-COVID-19 syndrome. We tested the hypothesis that a high-altitude environment with clean air and targeted spa rehabilitation (MR — mountain spa rehabilitation) can contribute to the improving platelet mitochondrial bioenergetics, to accelerating patient health and to the reducing socioeconomic problems. Fifteen healthy volunteers and fourteen patients with post-COVID-19 syndrome were included in the study. All parameters were determined before MR (MR1) and 16–18 days after MR (MR2). Platelet mitochondrial respiration and OXPHOS were evaluated using high resolution respirometry method, coenzyme Q10 level was determined by HPLC, and concentration of thiobarbituric acid reactive substances (TBARS) as a parameter of lipid peroxidation was determined spectrophotometrically. This pilot study showed significant improvement of clinical symptoms, lungs function, and regeneration of reduced CI-linked platelet mitochondrial respiration after MR in patients with post-COVID-19 syndrome. High-altitude environment with spa rehabilitation can be recommended for the acceleration of recovery of patients with post-COVID-19 syndrome.This research was partially funded by the Comenius University in Bratislava, Faculty of Medicine and by OncoReSearch, Rovinka, Slovakia.Peer reviewe

    Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention

    No full text
    Western-type diet with high salt and sugar, sedentary behavior, obesity, tobacco and alcoholism are important risk factors for hypertension. This review aims to highlight the role of western diet-induced oxidative stress and inflammation in the pathogenesis of hypertension and the role of various types of diets in its prevention with reference to dietary approaches to stop hypertension (DASH) diet. It seems that it is crucial to alter the western type of diet because such diets can also predispose all CVDs. Western diet-induced oxidative stress is characterized by excessive production of reactive oxygen species (ROS) with an altered oxidation-reduction (redox) state, leading to a marked increase in inflammation and vascular dysfunction. Apart from genetic and environmental factors, one important cause for differences in the prevalence of hypertension in various countries may be diet quality, deficiency in functional foods, and salt consumption. The role of the DASH diet has been established. However, there are gaps in knowledge about the role of some Indo-Mediterranean foods and Japanese foods, which have been found to decrease blood pressure (BP) by improving vascular function. The notable Indo-Mediterranean foods are pulses, porridge, spices, and millets; fruits such as guava and blackberry and vegetables, which may also decrease BPs. The Japanese diet consists of soya tofu, whole rice, in particular medical rice, vegetables and plenty of fish rich in fish oil, fish peptides and taurine that are known to decrease BPs. Epidemiological studies and randomized, controlled trials have demonstrated the role of these diets in the prevention of hypertension and metabolic diseases. Such evidence is still meager from Japan, although the prevalence of hypertension is lower (15–21%) compared to other developed countries, which may be due to the high quality of the Japanese diet. Interestingly, some foods, such as berries, guava, pumpkin seeds, carrots, soya beans, and spices, have been found to cause a decrease in BPs. Omega-3 fatty acids, fish peptide, taurine, dietary vitamin D, vitamin C, potassium, magnesium, flavonoids, nitrate and l-arginine are potential nutrients that can also decrease BPs. Larger cohort studies and controlled trials are necessary to confirm our views

    Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2’-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted
    corecore