5 research outputs found

    Evaluation of Hyperspectral Reflectance Parameters to Assess the Leaf Water Content in Soybean

    No full text
    Nondestructive assessment of water content and water stress in plants is an important component in the rational use of crop irrigation management in precision agriculture. Spectral measurements of light reflectance in the UV/VIS/NIR region (350–1075 nm) from individual leaves were acquired under a rapid dehydration protocol for validation of the remote sensing water content assessment in soybean plants. Four gravimetrical approaches of leaf water content assessment were used: relative water content (RWC), foliar water content as percent of total fresh mass (FWCt), foliar water content as percent of dry mass (FWCd), and equivalent water thickness (EWT). Leaf desiccation resulted in changes in optical properties with increasing relative reflectance at wavelengths between 580 and 700 nm. The highest positive correlations were observed for the relations between the photochemical reflectance index (PRI) and EWT (rP = 0.860). Data analysis revealed that the specific water absorption band at 970 nm showed relatively weaker sensitivity to water content parameters. The prediction of leaf water content parameters from PRI measurements was better with RMSEs of 12.4% (rP = 0.786), 9.1% (rP = 0.736), and 0.002 (rP = 0.860) for RWC, FWCt, and EWT (p < 0.001), respectively. The results may contribute to more efficient crop water management and confirmed that EWT has a statistically closer relationship with reflectance indices than other monitored water parameters

    Bioinoculants—Natural Biological Resources for Sustainable Plant Production

    No full text
    Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture

    The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects

    Get PDF
    Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop’s ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants

    Biofortification—A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security

    No full text
    Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock
    corecore