42 research outputs found
Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level
We compare the charge transport characteristics of heavy doped p- and
n-Si-alkyl chain/Hg junctions. Photoelectron spectroscopy (UPS, IPES and XPS)
results for the molecule-Si band alignment at equilibrium show the Fermi level
to LUMO energy difference to be much smaller than the corresponding Fermi level
to HOMO one. This result supports the conclusion we reach, based on negative
differential resistance in an analogous semiconductor-inorganic insulator/metal
junction, that for both p- and n-type junctions the energy difference between
the Fermi level and LUMO, i.e., electron tunneling, controls charge transport.
The Fermi level-LUMO energy difference, experimentally determined by IPES,
agrees with the non-resonant tunneling barrier height deduced from the
exponential length-attenuation of the current
Solid-State Protein Junctions:Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling
Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageo of junctions varies from 105 to 10−3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments
Large-Area, Ensemble Molecular Electronics: Motivation and Challenges
We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (imp in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current-voltage (I-V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I-V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. Finally, we point to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes. This review is complemented by a another review that covers metal-molecule-semiconductor junctions and their unique hybrid effects
Large-Area, Ensemble Molecular Electronics: Motivation and Challenges
We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (imp in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current-voltage (I-V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I-V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. Finally, we point to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes. This review is complemented by a another review that covers metal-molecule-semiconductor junctions and their unique hybrid effects
Electronic conduction during the formation stages of a single-molecule junction
Single-molecule junctions are versatile test beds for electronic transport at the atomic scale. However, not much is known about the early formation steps of such junctions. Here, we study the electronic transport properties of premature junction configurations before the realization of a single-molecule bridge based on vanadocene molecules and silver electrodes. With the aid of conductance measurements, inelastic electron spectroscopy and shot noise analysis, we identify the formation of a single-molecule junction in parallel to a single-atom junction and examine the interplay between these two conductance pathways. Furthermore, the role of this structure in the formation of single-molecule junctions is studied. Our findings reveal the conductance and structural properties of premature molecular junction configurations and uncover the different scenarios in which a single-molecule junction is formed. Future control over such processes may pave the way for directed formation of preferred junction structures
Defect scaling with contact area in EGaIn-based junctions: Impact on quality, Joule heating, and apparent injection current
10.1021/jp511002bJournal of Physical Chemistry C1192960-96
Electrically Controlled Bimetallic Junctions for Atomic-Scale Electronics
International audienceForming atomic-scalecontacts with attractive geometries and materialcompositions is a long-term goal of nanotechnology. Here, we showthat a rich family of bimetallic atomic-contacts can be fabricatedin break-junction setups. The structure and material composition ofthese contacts can be controlled by atomically precise electromigration,where the metal types of the electron-injecting and sink electrodesdetermine the type of atoms added to, or subtracted from, the contactstructure. The formed bimetallic structures include, for example,platinum and aluminum electrodes bridged by an atomic chain composedof platinum and aluminum atoms as well as iron-nickel single-atomcontacts that act as a spin-valve break junction without the needfor sophisticated spin-valve geometries. The versatile nature of atomiccontacts in bimetallic junctions and the ability to control theirstructure by electromigration can be used to expand the structuralvariety of atomic and molecular junctions and their span of properties