116 research outputs found

    Redox signalling in physiology, ageing and disease

    Get PDF

    A phagocytic route for uptake of double-stranded RNA in RNAi.

    Get PDF
    RNA interference (RNAi) has a range of physiological functions including as a defence mechanism against viruses. To protect uninfected cells in a multicellular organism, not only a cell-autonomous RNAi response is required but also a systemic one. However, the route of RNA spread in systemic RNAi remains unclear. Here we show that phagocytosis can be a route for double-stranded RNA uptake. Double-stranded RNA expressed in Escherichia coli induces robust RNAi in Drosophila S2 cells, with effectiveness comparable to that of naked dsRNA. We could separate this phagocytic uptake route from that for RNAi induced by naked dsRNA. Therefore, phagocytic uptake of dsRNA offers a potential route for systemic spread of RNAi

    Oxidation of p62 as an evolutionary adaptation to promote autophagy in stress conditions

    Get PDF
    Ageing and age-related diseases are characterised by increased oxidative and proteotoxic stress, which results in negative effects on cell function and survival. The cell possesses several mechanisms to deal with damaged proteins, including degradation via macroautophagy (hereafter called autophagy). This essential cellular pathway is conserved from yeast to humans and it is well established that its impairment reduces lifespan in multiple model organisms, including worms, flies and mice. In our study, recently published in Nature Communications, we asked if longer lifespan characteristic of higher organisms is the result of evolutionary adaptations to the autophagy machinery. We found that the autophagy receptor p62 can be oxidised leading to its oligomerisation which ultimately promotes autophagy. However this mechanism, present in vertebrates, has been acquired late in evolution. We propose that the ability of p62 to sense reactive oxygen species (ROS) via oxidation, and potentially other similar modifications, may have evolved in higher organisms and contributed to their increased lifespan. Indeed, impairment of this process could result in age-related neurodegeneration in humans

    Mitochondria in Cell Senescence:Is Mitophagy the Weakest Link?

    Get PDF
    Cell senescence is increasingly recognized as a major contributor to the loss of health and fitness associated with aging. Senescent cells accumulate dysfunctional mitochondria; oxidative phosphorylation efficiency is decreased and reactive oxygen species production is increased. In this review we will discuss how the turnover of mitochondria (a term referred to as mitophagy) is perturbed in senescence contributing to mitochondrial accumulation and Senescence-Associated Mitochondrial Dysfunction (SAMD). We will further explore the subsequent cellular consequences; in particular SAMD appears to be necessary for at least part of the specific Senescence-Associated Secretory Phenotype (SASP) and may be responsible for tissue-level metabolic dysfunction that is associated with aging and obesity. Understanding the complex interplay between these major senescence-associated phenotypes will help to select and improve interventions that prolong healthy life in humans. Search strategy and selection criteria: Data for this review were identified by searches of MEDLINE, PubMed, and references from relevant articles using the search terms “mitochondria AND senescence”, “(autophagy OR mitophagy) AND senescence”, “mitophagy AND aging” and related terms. Additionally, searches were performed based on investigator names. Abstracts and reports from meetings were excluded. Articles published in English between 1995 and 2017 were included. Articles were selected according to their relevance to the topic as perceived by the authors

    PI(5)P regulates autophagosome biogenesis.

    Get PDF
    Phosphatidylinositol 3-phosphate (PI(3)P), the product of class III PI3K VPS34, recruits specific autophagic effectors, like WIPI2, during the initial steps of autophagosome biogenesis and thereby regulates canonical autophagy. However, mammalian cells can produce autophagosomes through enigmatic noncanonical VPS34-independent pathways. Here we show that PI(5)P can regulate autophagy via PI(3)P effectors and thereby identify a mechanistic explanation for forms of noncanonical autophagy. PI(5)P synthesis by the phosphatidylinositol 5-kinase PIKfyve was required for autophagosome biogenesis, and it increased levels of PI(5)P, stimulated autophagy, and reduced the levels of autophagic substrates. Inactivation of VPS34 impaired recruitment of WIPI2 and DFCP1 to autophagic precursors, reduced ATG5-ATG12 conjugation, and compromised autophagosome formation. However, these phenotypes were rescued by PI(5)P in VPS34-inactivated cells. These findings provide a mechanistic framework for alternative VPS34-independent autophagy-initiating pathways, like glucose starvation, and unravel a cytoplasmic function for PI(5)P, which previously has been linked predominantly to nuclear roles.We are grateful for funding from a Wellcome Trust Principal Research Fellowship (095317/Z/11/Z to D.C.R.), a Wellcome Trust Strategic Award (100140/Z/ 12/Z), the NIHR Biomedical Research Centre in Dementia at Addenbrooke’s Hospital, an MRC Confidence in Concepts grant (D.C.R.), and a FEBS Long- Term Fellowship (A.A.).This article was originally published in Molecular Cell (M Vicinanza, VI Korolchuk, A Ashkenazi, C Puri, FM Menzies, JH Clarke, DC Rubinsztein, Molecular Cell 2015, 57, 219-234

    Autophagy, lipophagy and lysosomal lipid storage disorders

    Get PDF
    AbstractAutophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders

    Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson's disease associated with enhanced autophagy

    Get PDF
    Protective effects of the telomerase protein TERT have been shown in neurons and brain. We previously demonstrated that TERT protein can accumulate in mitochondria of Alzheimer’s disease (AD) brains and protect from pathological tau in primary mouse neurons. This prompted us to employ telomerase activators in order to boost telomerase expression in a mouse model of Parkinson’s disease (PD) overexpressing human wild type α-synuclein. Our aim was to test whether increased Tert expression levels were able to ameliorate PD symptoms and to activate protein degradation. We found increased Tert expression in brain for both activators which correlated with a substantial improvement of motor functions such as gait and motor coordination while telomere length in the analysed region was not changed. Interestingly, only one activator (TA-65) resulted in a decrease of reactive oxygen species from brain mitochondria. Importantly, we demonstrate that total, phosphorylated and aggregated α-synuclein were significantly decreased in the hippocampus and neocortex of activator-treated mice corresponding to enhanced markers of autophagy suggesting an improved degradation of toxic alpha-synuclein. We conclude that increased Tert expression caused by telomerase activators is associated with decreased α-synuclein protein levels either by activating autophagy or by preventing or delaying impairment of degradation mechanisms during disease progression. This encouraging preclinical data could be translated into novel therapeutic options for neurodegenerative disorders such as PD
    • …
    corecore