831 research outputs found

    Non-hydrostatic gas in the core of the relaxed galaxy cluster A1795

    Full text link
    Chandra data on A1795 reveal a mild edge-shaped discontinuity in the gas density and temperature in the southern sector of the cluster at r=60/h kpc. The gas inside the edge is 1.3-1.5 times denser and cooler than outside, while the pressure is continuous, indicating that this is a "cold front", the surface of contact between two moving gases. The continuity of the pressure indicates that the current relative velocity of the gases is near zero, making the edge appear to be in hydrostatic equilibrium. However, a total mass profile derived from the data in this sector under the equilibrium assumption, exhibits an unphysical jump by a factor of 2, with the mass inside the edge being lower. We propose that the cooler gas is "sloshing" in the cluster gravitational potential well and is now near the point of maximum displacement, where it has zero velocity but nonzero centripetal acceleration. The distribution of this non-hydrostatic gas should reflect the reduced gravity force in the accelerating reference frame, resulting in the apparent mass discontinuity. Assuming that the gas outside the edge is hydrostatic, the acceleration of the moving gas can be estimated from the mass jump, a ~ 800 h km/s/(10^8 yr). The gravitational potential energy of this gas that is available for dissipation is about half of its current thermal energy. The length of the cool filament extending from the cD galaxy (Fabian et al.) may give the amplitude of the gas sloshing, 30-40/h kpc. Such gas bulk motion might be caused by a disturbance of the central gravitational potential by past subcluster infall.Comment: Minor text clarifications to correspond to published version. 5 pages, 1 figure in color, uses emulateapj.sty. ApJ Letters in pres

    In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84

    Full text link
    Using deep Chandra observations of M84 we study the energetics of the interaction between the black hole and the interstellar medium of this early-type galaxy. We perform a detailed two dimensional reconstruction of the properties of the X-ray emitting gas using a constrained Voronoi tessellation method, identifying the mean trends and carrying out the fluctuation analysis of the thermodynamical properties of the hot ISM. In addition to the PV work associated with the bubble expansion, we identify and measure the wave energy associated with the mildly supersonic bubble expansion. We show that, depending on the age of the cavity and the associated wave, the waves can have a substantial contribution to the total energy release from the AGN. The energy dissipated in the waves tends to be concentrated near the center of M84 and in the direction perpendicular to the bubble outflow, possibly due to the interference of the waves generated by the expansion of northern and southern bubbles. We also find direct evidence for the escape of radio plasma from the ISM of the host galaxy into the intergalactic medium.Comment: 6 pages, ApJ in press, Nov. 1 200

    Cold fronts in cool core clusters

    Full text link
    Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with XMM-Newton shows that cold fronts are a common feature in galaxy clusters. Indeed most (if not all) of the nearby clusters (z < 0.04) host a cold front. Understanding the origin and the nature of a such frequent phenomenon is clearly important. To gain insight on the nature of cold fronts in cool core clusters we have undertaken a systematic study of all contact discontinuities detected in our sample, measuring surface brightness, temperature and when possible abundance profiles across the fronts. We measure the Mach numbers for the cold fronts finding values which range from 0.2 to 0.9; we also detect a discontinuities in the metal profile of some clusters.Comment: 6 pages, 3 figures, for proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," eds H. Boehringer, P. Schuecker, G. W. Pratt & A. Finoguenov, in Springer-Verlag series "ESO Astrophysics Symposia.

    Resolving the Galactic X-ray background

    Get PDF
    We use Chandra deep observations of the Galactic Center (GC) region to improve the constraints on the unresolved fraction of the Galactic X-ray background (also known as the Galactic ridge X-ray emission). We emphasize the importance of correcting the measured source counts at low fluxes for bias associated with Poisson noise. We find that at distances of 2'-4' from Sgr A* at least ~40% of the total X-ray emission in the energy band 4-8 keV originates from point sources with luminosities L(2-10 keV)> 10^{31} erg/sec. From a comparison of the source number-flux function in the GC region with the known luminosity function of faint X-ray sources in the Solar vicinity, we infer that Chandra has already resolved a large fraction of the cumulative contribution of cataclysmic variables to the total X-ray flux from the GC region. This comparison further indicates that most of the yet unresolved ~60% of the X-ray flux from the GC region is likely produced by weak cataclysmic variables and coronally active stars with L(2-10 keV)<10^{31} erg/sec. We conclude that the bulk of the Galactic X-ray background is produced by discrete sources.Comment: Submitted to A&

    Identification of black hole power spectral components across all canonical states

    Full text link
    From a uniform analysis of a large (8.5 Ms) Rossi X-ray Timing Explorer data set of Low Mass X-ray Binaries, we present a complete identification of all the variability components in the power spectra of black holes in their canonical states. It is based on gradual frequency shifts of the components observed between states, and uses a previous identification in the black hole low hard state as a starting point. It is supported by correlations between the frequencies in agreement with those previously found to hold for black hole and neutron stars. Similar variability components are observed in neutron stars and black holes (only the component observed at the highest frequencies is different) which therefore cannot depend on source-specific characteristics such as the magnetic field or surface of the neutron star or spin of the black hole. As the same variability components are also observed across the jet-line the X-ray variability cannot originate from the outer-jet but is most likely produced in either the disk or the corona. We use the identification to directly compare the difference in strength of the black hole and neutron star variability and find these can be attributed to differences in frequency and strength of high frequency features, and do not require the absence of any components. Black holes attain their highest frequencies (in the hard-intermediate and very-high states) at a level a factor ~6 below the highest frequencies attained by the corresponding neutron star components, which can be related to the mass difference between the compact objects in these systems.Comment: 17 pages, 16 figures, accepted for publication in Ap

    ESO 3060170 -- a massive fossil galaxy group with a heated gas core?

    Full text link
    We present a detailed study of the ESO 3060170 galaxy group combining Chandra, XMM and optical observations. The system is found to be a fossil galaxy group. The group X-ray emission is composed of a central dense cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 kpc to 400 kpc although the gas cooling time between 10 and 50 kpc (2 - 6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central AGN outburst in the past and the small dense cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a ``finger'', an edge-like feature and a small ``tail'', all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas ``sloshing'' around the center and produce these asymmetric features. The observed flat temperature profile to 1/3 R_vir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S ∝\propto r 0.85^{~ 0.85}. This is direct evidence for the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3 R_vir and find the ESO 3060170 group is the most massive fossil group known (1 - 2 X 1014^{14} M⊙_{\odot}). The M/L ratio of the system, ~ 150 at 0.3 R_vir, is normal.Comment: 17 pages, 12 figures, to appear in ApJ. A high-resolution version can be downloaded from http://cxc.harvard.edu/~msun/esoa.p
    • 

    corecore