269 research outputs found

    (SI10-068) Performance Analysis of Cosine Window Function

    Get PDF
    This paper reviews the mathematical functions called the window functions which are employed in the Finite Impulse Response (FIR) filter design applications as well as spectral analysis for the detection of weak signals. The characteristic properties of the window functions are analyzed and parameters are compared among the known conventional cosine window (CW) functions (Rectangular, Hamming, Hanning, and Blackman) and the variable Kaiser window function. The window function expressed in the time domain can be transformed into the frequency domain by taking the Discrete Fourier Transform (DFT) of the time domain window function. The frequency response of the window function so obtained has main lobe, side lobes, and roll-off rate of side lobes. The main lobe width (MLW) expressed in 3dB bandwidth (BW), highest side lobe level (HSLL), and side lobe roll-off rate (SLROR) of the conventional window function and variable Kaiser window is then evaluated from the frequency response and compared to find out the appropriate window for employed applications

    EPASAD: Ellipsoid decision boundary based Process-Aware Stealthy Attack Detector

    Full text link
    Due to the importance of Critical Infrastructure (CI) in a nation's economy, they have been lucrative targets for cyber attackers. These critical infrastructures are usually Cyber-Physical Systems (CPS) such as power grids, water, and sewage treatment facilities, oil and gas pipelines, etc. In recent times, these systems have suffered from cyber attacks numerous times. Researchers have been developing cyber security solutions for CIs to avoid lasting damages. According to standard frameworks, cyber security based on identification, protection, detection, response, and recovery are at the core of these research. Detection of an ongoing attack that escapes standard protection such as firewall, anti-virus, and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the system. Therefore, anomaly detection in physical dynamics proves an effective means to implement defense-in-depth. PASAD is one example of anomaly detection in the sensor/actuator data, representing such systems' physical dynamics. We present EPASAD, which improves the detection technique used in PASAD to detect these micro-stealthy attacks, as our experiments show that PASAD's spherical boundary-based detection fails to detect. Our method EPASAD overcomes this by using Ellipsoid boundaries, thereby tightening the boundaries in various dimensions, whereas a spherical boundary treats all dimensions equally. We validate EPASAD using the dataset produced by the TE-process simulator and the C-town datasets. The results show that EPASAD improves PASAD's average recall by 5.8% and 9.5% for the two datasets, respectively.Comment: Submitte

    System Engineering Method for System Design

    Get PDF
    Industrial chemistr

    Downmodulation of lysophosphatidic acid by Berberine loaded folate-conjugated glycol chitosan nanoparticles (BFGCN) to mitigate Rheumatoid arthritis (RA) & Cardio-vascular disease(CVD): Current knowledge and future perspectives

    Get PDF
    440-449The perils of cardiovascular diseases (CVD) are enhanced by systemic chronic inflammation in autoimmune disorders like Rheumatoid arthritis (RA), in which the patients generally exhibit a high inflammatory burden, dyslipidemia causing 50-60% of RA patients susceptible to CVD dependent mortality. Lysophosphatidic acid (LPA) is a polar, pleiotropic lipid molecule that is water soluble and present in the synovial fluid that can be exploited as an effective biomarker for lipid-signalling. Current research on alternative medicine has recognized various new molecular targets of Berberine (BBR) and established novel signals in support of the efficacy and therapeutic potential of BBR to fight CVD. Therefore, BBR, an alkaloid with poor aqueous solubility could be foreseen as a therapeutic strategy for the reduction of inflammation induced lipidemia by targeting the macrophages and modulating their functions. Hence, a novel BBR loaded folate-conjugated glycol chitosan nanoparticles (BFGCN) could be hypothesized as a three-pronged approach to target activated macrophages, fibroblasts of synovial fluid for downmodulation of LPA. The greatest challenge is the heterogeneity, complexity and interdependence of RA and CVD. Investigation of prognostic and predictive biomarkers is urgently required. Therefore, an improved understanding of the pathogenesis of RA would facilitate identifying an improved targeted treatment and management of RA patients

    Smart Drug-Delivery Systems in the Treatment of Rheumatoid Arthritis: Current, Future Perspectives

    Get PDF
    Rheumatoid arthritis (RA) is a progressive autoimmune inflammatory disorder characterized by cellular infiltration in synovium causing joint destruction and bone erosion. The heterogeneous nature of the disease manifests in different clinical forms, hence treatment of RA still remains obscure. Treatments are limited owing to systemic toxicity by dose-escalation and lack of selectivity. To overcome these limitations, Smart drug delivery systems (SDDS) are under investigation to exploit the arthritic microenvironment either by passive targeting or active targeting to the inflamed joints via folate receptor, CD44, angiogenesis, integrins. This review comprehensively deliberates upon understanding the pathophysiology of RA and role of SDDSs, highlighting the emerging trends for RA nanotherapeutics

    Study of Anaemia in children and current update

    Get PDF
    Anaemia in children is a major public health problem throughout the biosphere. It is estimated that at least one-third of the populace has been at one-time anemic. It is often multifactorial, iron deficiency being the most frequent etiology and reasons like malaria endemicity, poor nutrition including micronutrient deficiency, haemoglobinopathies, frequent bacterial infections and high parasitic infestations have been given for these high prevalence rates. Chronic Anaemia may impair growth, cardiac function and cognitive development in infants but other consequences are rather poorly explored more thoroughly. Chronic disorders and iron deficiency were the most common causes of Anaemia. Anaemia was frequently diagnosed in this series of elderly patients. Partly treatable nutritional deficiencies, such as iron or folate deficiency, were identified as possible causes. A complex and heterogeneous interplay of chronic inflammation, functional iron deficiency, and renal impairment was identified in a large proportion of patients. Measures directed at prevention and control of anemia, include increased coverage of supplementation and fortification programs are strongly recommended

    Genetic analysis of HIV-1 Circulating Recombinant Form 02_AG, B and C subtype-specific envelope sequences from Northern India and their predicted co-receptor usage

    Get PDF
    HIV-1 epidemic in India is largely driven by subtype C but other subtypes or recombinants have also been reported from several states of India. This is mainly due to the co-circulation of other genetic subtypes that potentially can recombine to generate recombinant/mosaic genomes. In this study, we report detail genetic characterization of HIV-1 envelope sequences from North India (Delhi and neighboring regions). Six of 13 were related to subtype C, one B and the rest six showed relatedness with CRF02_AG strain. The subtype C possessed the highly conserved GPGQ motif but subtype B possessed the GPGR motif in the V3 loop as observed earlier. While most of the sequences suggested CCR5 co-receptor usage, one subtype C sample clearly indicated CXCR4 usage. A successful mother to child transmission was established in two pairs. Thus, co-circulation of multiple subtypes (B and C) and the recombinant CRF02_AG strains in North India suggests a rapidly evolving scenario of HIV-1 epidemic in this region with impact on vaccine formulation. Since this is the first report of CRF02_AG envelope from India, it will be important to monitor the spread of this strain and its impact on HIV-1 transmission in India

    Preparation and evaluation of mouth dissolving tablets of meloxicam

    Get PDF
    The aim of the present study was to develop evaluate mouth dissolving tablet of meloxicam. Drug delivery systems became sophisticated as pharmaceutical scientists acquire a better understanding of the physicochemical and biochemical parameters pertinent to their performance. Over the past three decades, mouth dissolving or orally disintegrating tablets have gained considerable attention as a preferred alternative to conventional tablets due to better patient compliance. The most preferrable route of drug administration (e.g. oral) is limited to drug candidate that show poor permeability across the gastric mucosa and those, which are sparingly soluble. A large majority of the new chemical entities and many new existing drug molecules are poorly soluble, thereby limiting their potential uses and increasing the difficulty of formulating bioavailable drug products,so lastlly the purpose of this study was to grow mouth dissolve tablets of Meloxicam. Meloxicam is a newer selective COX-1 inhibitor. These tablets were prepared by wet granulation procedure. The tablets were evaluated for % friability, wetting time and disintegration time. Sublimation of camphor from tablets resulted in better tablets as compared to the tablets prepared from granules that were exposing to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.Keywords: Mouth dissolving tablet; Maloxicam; Bioavailability; NSAI
    corecore