37 research outputs found

    Pharmacokinetic interactions between simeprevir and ledipasvir in treatment naive hepatitis C virus genotype 1-Infected patients without cirrhosis treated with a simeprevir-sofosbuvir-ledipasvir regimen

    Get PDF
    Interactions between simeprevir (hepatitis C virus [HCV] NS3/4A protease inhibitor) and ledipasvir (HCV NS5A replication complex inhibitor) were investigated in treatment-naive HCV genotype 1-infected patients without cirrhosis, treated with simeprevir-sofosbuvir-ledipasvir in a two-panel, phase 2, open-label study. Patients had stable background treatment with sofosbuvir (400 mg once daily [QD]). In panel 1 (n = 20), the effect of ledipasvir (90 mg QD) on simeprevir (150 mg QD) was studied. Patients received simeprevir and sofosbuvir from days 1 to 14; steady-state pharmacokinetics (PK) of simeprevir was assessed (day 14). On day 15, ledipasvir was added and steady-state PK of simeprevir in the combination was evaluated (day 28). In panel 2 (n = 20), the effect of simeprevir on ledipasvir was investigated. From days 1 to 14, patients received ledipasvir and sofosbuvir and steady-state PK of ledipasvir was assessed (day 14). On day 15, simeprevir was added and a full PK profile was obtained (day 28). The least-squares mean maximum plasma concentration and area under the concentration-time curve (90% confidence interval) increased 2.3-fold (2.0- to 2.8-fold) and 3.1-fold (2.4- to 3.8-fold) for simeprevir, respectively (panel 1), and 1.6-fold (1.4- to 1.9-fold) and 1.7-fold (1.6- to 2.0-fold) for ledipasvir, respectively (panel 2), in the presence versus the absence of the other drug. All patients achieved sustained virologic responses 12 weeks after treatment end. Adverse events, mainly grade 1/2, occurred in 80% of patients; the most common was photosensitivity (45%). Due to the magnitude of interaction and the limited amount of safety data available, the use of this treatment combination is not recommended

    A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium

    Get PDF
    BACKGROUND: Four human coronaviruses are currently known to infect the respiratory tract: human coronaviruses OC43 (HCoV-OC43) and 229E (HCoV-229E), SARS associated coronavirus (SARS-CoV) and the recently identified human coronavirus NL63 (HCoV-NL63). In this study we explored the incidence of HCoV-NL63 infection in children diagnosed with respiratory tract infections in Belgium. METHODS: Samples from children hospitalized with respiratory diseases during the winter seasons of 2003 and 2004 were evaluated for the presence of HCoV-NL63 using a optimized pancoronavirus RT-PCR assay. RESULTS: Seven HCoV-NL63 positive samples were identified, six were collected during January/February 2003 and one at the end of February 2004. CONCLUSIONS: Our results support the notation that HCoV-NL63 can cause serious respiratory symptoms in children. Sequence analysis of the S gene showed that our isolates could be classified into two subtypes corresponding to the two prototype HCoV-NL63 sequences isolated in The Netherlands in 1988 and 2003, indicating that these two subtypes may currently be cocirculating

    Genetic Variability of Human Respiratory Coronavirus OC43

    No full text

    Subgroup Prevalence and Genotype Circulation Patterns of Human Respiratory Syncytial Virus in Belgium during Ten Successive Epidemic Seasons▿

    No full text
    Human respiratory syncytial virus (HRSV) is the leading viral cause of severe respiratory illness for infants and young children worldwide. Two major antigenic groups (A and B) of HRSV exist, and viruses from both subgroups can cocirculate during epidemics; however, their frequencies might differ between seasons. The subgroup prevalence and genotype distribution patterns of HRSV strains were investigated in a community in Belgium during 10 successive epidemic seasons (1996 to 2006). A regular 3-year cyclic pattern of subgroup dominance was observed, consisting of two predominant HRSV-A seasons, followed by a single HRSV-B-dominant year. HRSV infections with both subgroups were more prevalent among children younger than 6 months and had a peak incidence in December. The most frequently detected genotypes were GA5 and GB13, the latter including strains with the 60-nucleotide duplication in the G gene. Furthermore, GA5 remained the dominant HRSV genotype in two consecutive epidemic seasons twice during the study period. Additional variability was detected among the GB13 isolates, due to the usage of a novel termination codon in the G gene. Dual infections with both HRSV subgroups were detected for 9 patients, and subsequent infections with the heterologous HRSV subgroup were documented for 15 patients. Among five patients with homologous reinfections, only one was caused by HRSV-B. Our results support the hypothesis that the overall prevalence of HRSV-A over HRSV-B could be due to a more-transient subgroup A-specific immune protection

    Ranst M. A pancoronavirus RTPCR assay for detection of all known coronaviruses. Methods Mol Biol 2008

    No full text
    Abstract The recent discoveries of novel human coronaviruses, including the coronavirus causing SARS, and the previously unrecognized human coronaviruses HCoV-NL63 and HCoV-HKU1, indicate that the family Coronaviridae harbors more members than was previously assumed. All human coronaviruses characterized at present are associated with respiratory illnesses, ranging from mild common colds to more severe lower respiratory tract infections. Since the etiology of a relatively large percentage of respiratory tract diseases remains unidentified, it is possible that for a certain number of these illnesses, a yet unknown viral causative agent may be found. Screening for the presence of novel coronaviruses requires the use of a method that can detect all coronaviruses known at present. In this chapter, we describe a pancoronavirus degenerate primer-based method that allows the detection of all known and possibly unknown coronaviruses by RT-PCR amplification and sequencing of a 251-bp fragment of the coronavirus polymerase gene

    Virology analysis in HCV genotype 1-infected patients treated with the combination of simeprevir and TMC647055/ritonavir, with and without ribavirin, and JNJ-56914845

    No full text
    Abstract Background In study TMC647055HPC2001, a 3-direct-acting-antiviral (DAA) regimen combining NS3/4A protease inhibitor simeprevir (SMV), non-nucleoside NS5B inhibitor TMC647055/ritonavir (RTV) and NS5A inhibitor JNJ-56914845 resulted in high sustained virologic response 12 weeks after actual end of treatment (SVR12) in chronic hepatitis C virus (HCV) genotype 1-infected patients. SVR12 rates were generally lower in the 2-DAA regimen SMV + TMC647055/RTV with or without ribavirin. The objective of this study was to identify and characterise pre-existing and emerging resistance-associated variants (RAVs) in patients enrolled in study TMC647055HPC2001. Methods HCV population sequencing analyses were performed on baseline isolates from all patients (n = 90) and post-baseline isolates from patients with virologic failure (n = 22). In addition, deep sequencing and phenotypic analyses were performed on selected baseline and post-baseline isolates. Results The majority of patients with virologic failure had emerging RAVs to all study drugs at the time of failure: in all 22 patients SMV RAVs emerged at NS3 positions 80, 155, 156 and/or 168, consistent with the known SMV resistance profile. Emerging TMC647055 RAVs at NS5B position 495 were detected in the majority of patients (16/22), and all 5 patients who failed the 3-DAA regimen had emerging JNJ-56914845 RAVs at NS5A positions 30 and/or 31. While at the end of study emerging SMV and TMC647055 RAVs were no longer observed by population sequencing in 40% (8/20) and 62.5% (10/16) of patients with follow-up data available, respectively, emerging JNJ-56914845 RAVs were still detected in all (5/5) patients. Conclusions Virologic failure in the 2- and 3-DAA combinations was, in the majority of patients, associated with the emergence of RAVs to all study drugs. While emerging SMV and TMC647055 RAVs became undetectable during follow-up, JNJ-56914845 RAVs in NS5A were still observed at end of study. Trial registration number NCT01724086 (date of registration: September 26, 2012

    Viral load quantitation of SARS-coronavirus RNA using a one-step real-time RT-PCR

    Get PDF
    SummaryIntroductionSevere acute respiratory syndrome (SARS) is an emerging infectious disease that first occurred in humans in the People's Republic of China in November 2002 and has subsequently spread worldwide. A novel virus belonging to the Coronaviridae family has been identified as the cause of this pulmonary disease. The severity of the disease combined with its rapid spread requires the development of fast and sensitive diagnostic assays.ResultsA real-time quantitative RT-PCR was designed in the nsp11 region of the replicase 1B domain of the SARS-coronavirus (SARS-CoV) genome. To evaluate this quantitative RT-PCR, cRNA standards were constructed by in vitro transcription of SARS-CoV Frankfurt 1 RNA using T7 RNA polymerase, followed by real-time RT-PCR. The assay allowed quantitation over a range of 102 to 108 RNA copies per reaction.ConclusionsExtrapolated to clinical samples, this novel assay has a detection range of 104 to 1010 copies of viral genome equivalents per millilitre. In comparison to the current de facto cRNA Artus Biotech standard, the in-house cRNA standard gives a 100-fold higher absolute quantity, suggesting a possible underestimation of the viral load when using the Artus Biotech standard

    Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice▿

    No full text
    Until recently, human coronaviruses (HCoVs), such as HCoV strain OC43 (HCoV-OC43), were mainly known to cause 15 to 30% of mild upper respiratory tract infections. In recent years, the identification of new HCoVs, including severe acute respiratory syndrome coronavirus, revealed that HCoVs can be highly pathogenic and can cause more severe upper and lower respiratory tract infections, including bronchiolitis and pneumonia. To date, no specific antiviral drugs to prevent or treat HCoV infections are available. We demonstrate that chloroquine, a widely used drug with well-known antimalarial effects, inhibits HCoV-OC43 replication in HRT-18 cells, with a 50% effective concentration (± standard deviation) of 0.306 ± 0.0091 μM and a 50% cytotoxic concentration (± standard deviation) of 419 ± 192.5 μM, resulting in a selectivity index of 1,369. Further, we investigated whether chloroquine could prevent HCoV-OC43-induced death in newborn mice. Our results show that a lethal HCoV-OC43 infection in newborn C57BL/6 mice can be treated with chloroquine acquired transplacentally or via maternal milk. The highest survival rate (98.6%) of the pups was found when mother mice were treated daily with a concentration of 15 mg of chloroquine per kg of body weight. Survival rates declined in a dose-dependent manner, with 88% survival when treated with 5 mg/kg chloroquine and 13% survival when treated with 1 mg/kg chloroquine. Our results show that chloroquine can be highly effective against HCoV-OC43 infection in newborn mice and may be considered as a future drug against HCoVs
    corecore