17 research outputs found
Photoelectrocatalytic Surfactant Pollutant Degradation and Simultaneous Green Hydrogen Generation
For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO/BiVO photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO/BiVO films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of HO from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 μmol/cm and 71.81 μmol/cm of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential
A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications
A novel and simple chemical method based on sol-gel processing was proposed to deposit metastable orthorhombic tin oxide (SnOx) thin films on glass substrates at room temperature. The resultant samples are labeled according to the solvents used: ethanol (SnO-EtOH), isopropanol (SnO-IPA) and methanol (SnO-MeOH). The variations in the structural, morphological and optical properties of the thin films deposited using different solvents were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence (PL) analysis. The XRD patterns confirm that all the films, irrespective of the solvents used for preparation, were polycrystalline in nature and contained a mixed phases of tin (II) oxide and tin (IV) oxide in a metastable orthorhombic crystal structure. FTIR spectra confirmed the presence of Sn=O and Sn-O in all of the samples. PL spectra showed a violet emission band centered at 380 nm (3.25 eV) for all of the solvents. The UV-vis spectra indicated a maximum absorption band shown at 332 nm and the highest average transmittance around 97% was observed for the SnO-IPA and SnO-MeOH thin film samples. The AFM results show variations in the grain size with solvent. The structural and optical properties of the SnO thin films indicate that this method of fabricating tin oxide is promising and that future work is warranted to analyze the electrical properties of the films in order to determine the viability of these films for various transparent conducting oxide applications
Multifunctional ZnO/SiO2 Core/Shell Nanoparticles for Bioimaging and Drug Delivery Application
Semiconducting nanoparticles with luminescent properties are used as detection probes and drug carriers in in-vitro and in-vivo analysis. ZnO nanoparticles, due to its biocompatibility and low cost, have shown potential application in bioimaging and drug delivery. Thus, ZnO/SiO2 core/shell nanoparticle was synthesised by wet chemical method for fluorescent probing and drug delivery application. The synthesised core/shell nanomaterial was characterized using XRD, FTIR, UV-VIS spectroscopy, Raman spectroscopy, TEM and PL analysis. The silicon shell enhances the photoluminescence and aqueous stability of the pure ZnO nanoparticles. The porous surface of the shell acts as a carrier for sustained release of curcumin. The synthesized core/shell particle shows high cell viability, hemocompatibility and promising florescent property. [Figure not available: see fulltext.]
Adaptive Query Processing: Technology in Evolution
As query engines are scaled and federated, they must cope with highly unpredictable and changeable environments. In the Telegraph project, we are attempting to architect and implement a continuously adaptive query engine suitable for global-area systems, massive parallelism, and sensor networks. To set the stage for our research, we present a survey of prior work on adaptive query processing, focusing on three characterizations of adaptivity: the frequency of adaptivity, the effects of adaptivity, and the extent of adaptivity. Given this survey, we sketch directions for research in the Telegraph project
Chromosomal Integration of Adenoviral Vector DNA In Vivo â–¿
So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAHΔexon5 mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 × 10−5 per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 × 10−7. This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer
Photoelectrocatalytic Surfactant Pollutant Degradation and Simultaneous Green Hydrogen Generation
For the first time, we demonstrate a photoelectrocatalysistechniquefor simultaneous surfactant pollutant degradation and green hydrogengeneration using mesoporous WO3/BiVO4 photoanodeunder simulated sunlight irradiation. The materials properties suchas morphology, crystallite structure, chemical environment, opticalabsorbance, and bandgap energy of the WO3/BiVO4 films are examined and discussed. We have tested the anionic type(sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants(benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants.A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min,respectively, by applying 1.75 V applied potential vs RHE to the circuit,under 1 sun was achieved. An interesting competitive phenomenon forphotohole utilization was observed between surfactants and adsorbedwater. This led to the formation of H2O2 fromwater alongside surfactant degradation (anode) and hydrogen evolution(cathode). No byproducts were observed after the direct photoholemediated degradation of surfactants, implying its advantage over otherAOPs and biological processes. In the cathode compartment, 82.51 mu mol/cm(2) and 71.81 mu mol/cm(2) of hydrogen gas weregenerated during the BAC-C12 and S2NS surfactant degradation process,respectively, at 1.75 V RHE applied potential