4 research outputs found

    Unified Power Control of Permanent Magnet Synchronous Generator Based Wind Power System with Ancillary Support during Grid Faults

    Get PDF
    A unified active power control scheme is devised for the grid-integrated permanent magnet synchronous generator-based wind power system (WPS) to follow the Indian electricity grid code requirements. The objective of this paper is to propose control schemes to ensure the continuous integration of WPS into the grid even during a higher percentage of voltage dip. In this context, primarily a constructive reactive power reference is formulated to raise and equalize the point of common coupling (PCC) potential during symmetrical and asymmetrical faults, respectively. A simple active power reference is also proposed to inject a consistent percentage of generated power even during faults without violating system ratings. Eventually, the efficacy of the proposed scheme is demonstrated in terms of PCC voltage enhancement, DC-link potential, grid real, and reactive power oscillation minimization using the PSCAD/ EMTDC software

    A technical review of modern traction inverter systems used in electric vehicle application

    No full text
    This article presents a comprehensive review of modern traction inverter systems, their possible control strategies, and various modulation techniques deployed in electric vehicles (EVs). The traction inverter is a fundamental component in electrifying the EV drive system due to its critical functioning in a wide range of operations. Some well-known EV manufacturers have recently switched to high-voltage rating batteries in order to gain the advantages of lower current, greater density of power, and quicker charging state time. In this context, multilevel inverters (MLIs) have taken on the role as a promising substitute of traditional two-level traction inverters, and using suitable control and modulation techniques becomes crucial for employing multilevel systems. Many important problems that arise in multilevel topologies, such as equal power loss sharing and capacitor voltage balancing must be handled by the control system structure. Additionally, MLIs possess benefits such as increased efficiency, improved quality of waveform, and inherent fault tolerance, which make them a desirable choice for EV applications. A comparison of various MLI topologies is presented in this paper based on the most significant factors considered in the electrification of transportation. The objective of this article is to explore the various aspects of MLI concepts including alternative topologies, with lower switch counts

    Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles—A Technical Review

    No full text
    Electric vehicles (EVs) are emerging as an alternative transportation system owing to a reduction in depleting lubricates usage and greenhouse gas emissions. This paper presents a technical review of each and every sub-system and its feasible control of battery EV (BEV) propulsion units. The study includes the possible combination of electrical machines (EMs), storage system, and power electronic converters and their associated control strategies. The primary unit, i.e., EM, is the heart of the EV, which is used to drive the vehicle at the desired speed as well as to restore the regenerative braking (RB) energy that is generated to enhance the overall system reliability. To electrify the transportation sector, it is necessary to include new options of power electronic converter topologies and their associated control strategies for numerous reasons, which include extracting maximum power from sources in case the EV is powered from renewable energy resources, boosting the energy storage capability for longer electric range, managing power flow from the source to battery or battery to vehicle or vehicle to battery, and regulating the speed of the vehicle and braking control. Based on the survey, the suitable combination of sub-systems and their control for three and four-wheeler EVs are summarized in this paper

    Framework of Transactive Energy Market Strategies for Lucrative Peer-to-Peer Energy Transactions

    Get PDF
    Leading to the enhancement of smart grid implementation, the peer-to-peer (P2P) energy transaction concept has grown dramatically in recent years allowing the end-users to successfully exchange their excess generation and demand in a more profitable way. This paper presents local energy market (LEM) architecture with various market strategies for P2P energy trading among a set of end-users (consumers and prosumers) in a smart residential locality. In a P2P fashion, prosumers/consumers can export/import the available generation/demand in the LEM at a profit relative to utility prices. A common portal known as the transactive energy market operator (TEMO) is introduced to manage the trading in the LEM. The goal of the TEMO is to develop a transaction agreement among P2P players by establishing a price for each transaction based on the price and trading demand provided by the participants. A few case studies on a location with ten residential P2P participants validate the performance of the proposed TEMO
    corecore