7 research outputs found

    Single-stage repair of adult aortic coarctation and concomitant cardiovascular pathologies: a new alternative surgical approach

    Get PDF
    BACKGROUND: Coarctation of the aorta in the adulthood is sometimes associated with additional cardiovascular pathologies that require intervention. Ideal approach in such patients is uncertain. Anatomic left-sided short aortic bypass from the arcus aorta to descending aorta via median sternotomy allows simultaneuos repair of both complex aortic coarctation and concomitant cardiac operation. MATERIALS: Four adult patients were underwent Anatomic left-sided short aortic bypass operation for complex aortic coarctation through median sternotomy using deep hypothermic circulatory arrest. Concomitant cardiac operations were Bentall procedure for annuloaortic ectasia in one patient, coronary artery bypass grafting for three vessel disease in two patient, and patch closure of ventricular septal defect in one patient. RESULTS: All patients survived the operation and were alive with patent bypass at a mean follow-up of 36 months. No graft-related complications occurred, and there were no instances of stroke or paraplegia. CONCLUSION: We conclude that single-stage repair of adult aortic coarctation with concomitant cardiovascular lesions can be performed safely using this newest technique

    Two stage hybrid approach for complex aortic coarctation repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of an adult patient with aortic coarctation and an associated cardiac pathology poses a great surgical challenge since there are no standard guidelines for the therapy of such complex pathology. Debate exists not only on which lesion should be corrected first, but also upon the type and timing of the procedure. Surgery can be one- or two-staged. Both of these strategies are accomplice with elevate morbidity and mortality.</p> <p>Case report</p> <p>In the face of such an extended surgical approach, balloon dilatation seems preferable for treatment of severe aortic coarctation.</p> <p>We present an adult male patient with aortic coarctation combined with ascending aorta aneurysm and concomitant aortic valve regurgitation. The aortic coarctation was corrected first, using percutaneous balloon dilatation; and in a second stage the aortic regurgitation and ascending aorta aneurysm was treated by Bentall procedure. The patients' postoperative period was uneventful. Three years after the operation he continues to do well.</p

    Dealing with Missing Depth: Recent Advances in Depth Image Completion and Estimation

    Get PDF
    Even though obtaining 3D information has received significant attention in scene capture systems in recent years, there are currently numerous challenges within scene depth estimation which is one of the fundamental parts of any 3D vision system focusing on RGB-D images. This has lead to the creation of an area of research where the goal is to complete the missing 3D information post capture. In many downstream applications, incomplete scene depth is of limited value, and thus, techniques are required to fill the holes that exist in terms of both missing depth and colour scene information. An analogous problem exists within the scope of scene filling post object removal in the same context. Although considerable research has resulted in notable progress in the synthetic expansion or reconstruction of missing colour scene information in both statistical and structural forms, work on the plausible completion of missing scene depth is contrastingly limited. Furthermore, recent advances in machine learning using deep neural networks have enabled complete depth estimation in a monocular or stereo framework circumnavigating the need for any completion post-processing, hence increasing both efficiency and functionality. In this chapter, a brief overview of the advances in the state-of-the-art approaches within RGB-D completion is presented while noting related solutions in the space of traditional texture synthesis and colour image completion for hole filling. Recent advances in employing learning-based techniques for this and related depth estimation tasks are also explored and presented
    corecore