59 research outputs found
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users
Advances in Wireless Body Area Networks, where embedded accelerometers, gyroscopes, and other sensors empower users to track real-time health data continuously, have made it easier for users to follow a healthier lifestyle. Various other apps have been intended to choose suitable physical exercise, depending on the current healthcare environment. A Mobile Application (Mobile App) based recommendation system is a technology that allows users to select an apt activity that might suit their preferences. However, most of the current applications require constant input from end-users and struggle to include those who have hectic schedules or are not dedicated and self-motivated. This research introduces a methodology that uses a �Selective Cluster Cube� recommender system to intelligently monitor and classify user behavior by collecting accelerometer data and synchronizing with its calendar. We suggest customized daily workouts based on historical user and related user habits, interests, physical status, and accessibility. Simultaneously, the exposure of customer requirements to the server is also a significant concern. Developing privacy-preserving protocols with basic cryptographic techniques (e.g., protected multi-party computing or HE) is a standard solution to address privacy issues, but in combination with state-of-the-art advising frameworks, it frequently provides far-reaching solutions. This paper proposes a novel framework, a Privacy Protected Recommendation System (PRIPRO), that employs HE for securing private user data. The PRIPRO model is compared for accuracy and robustness using standard evaluation parameters against three datasets
Growth of large-sized relaxor ferroelectric PZN-PT single crystals by modified flux growth method
A novel bottom-cooling high-temperature solution growth technique is
developed for growing large-sized relaxor ferroelectric
0.91Pb(Zn1/3Nb2/3O3)-0.09PbTiO3 (PZN-PT) single crystals. During the growth, an
inverse temperature gradient is maintained in the crucible base by flowing air
at a controlled rate. This method restricts the number of spontaneously
nucleated crystals at crucible bottom, reduces loss of volatile PbO component
and favours the growth of large-sized PZN-PT single crystals. Large-sized
PZN-PT single crystals of dimensions ~ 22x20x14 mm3 are reproducibly grown by
the proposed method. The electrical characteristics of the PZN-PT wafers
oriented along the , and directions are investigated. PZN-PT
wafers oriented along the direction exhibited superior piezoelectric
coefficient (d33) of ~ 2221 pm/V. The homogeneity of the physical parameters is
analysed by preparing 10 elements with dimensions of ~5x2.5x2.5 mm3 which were
cut from single wafer oriented along the direction. The ferro-, piezo-
and dielectric characteristics of these wafers were found to be highly uniform
with small standard deviation. The observation of d33 value with less than 2 %
deviation from mean value confirms the growth of high quality PZN-PT single
crystals.Comment: 16 pages, 7 figure
An Efficient Deep Convolutional Neural Network Approach for Object Detection and Recognition Using a Multi-Scale Anchor Box in Real-Time
Deep learning is a relatively new branch of machine learning in which computers are taught to recognize patterns in massive volumes of data. It primarily describes learning at various levels of representation, which aids in understanding data that includes text, voice, and visuals. Convolutional neural networks have been used to solve challenges in computer vision, including object identification, image classification, semantic segmentation and a lot more. Object detection in videos involves confirming the presence of the object in the image or video and then locating it accurately for recognition. In the video, modelling techniques suffer from high computation and memory costs, which may decrease performance measures such as accuracy and efficiency to identify the object accurately in real-time. The current object detection technique based on a deep convolution neural network requires executing multilevel convolution and pooling operations on the entire image to extract deep semantic properties from it. For large objects, detection models can provide superior results; however, those models fail to detect the varying size of the objects that have low resolution and are greatly influenced by noise because the features after the repeated convolution operations of existing models do not fully represent the essential characteristics of the objects in real-time. With the help of a multi-scale anchor box, the proposed approach reported in this paper enhances the detection accuracy by extracting features at multiple convolution levels of the object. The major contribution of this paper is to design a model to understand better the parameters and the hyper-parameters which affect the detection and the recognition of objects of varying sizes and shapes, and to achieve real-time object detection and recognition speeds by improving accuracy. The proposed model has achieved 84.49 mAP on the test set of the Pascal VOC-2007 dataset at 11 FPS, which is comparatively better than other real-time object detection models
Mathematical and Machine Learning Models for Groundwater Level Changes: A Systematic Review and Bibliographic Analysis
With the effects of climate change such as increasing heat, higher rainfall, and more recurrent extreme weather events including storms and floods, a unique approach to studying the effects of climatic elements on groundwater level variations is required. These unique approaches will help people make better decisions. Researchers and stakeholders can attain these goals if they become familiar with current machine learning and mathematical model approaches to predicting groundwater level changes. However, descriptions of machine learning and mathematical model approaches for forecasting groundwater level changes are lacking. This study picked 117 papers from the Scopus scholarly database to address this knowledge gap. In a systematic review, the publications were examined using quantitative and qualitative approaches, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the reporting format. Machine learning and mathematical model techniques have made significant contributions to predicting groundwater level changes, according to the study. However, the domain is skewed because machine learning has been more popular in recent years, with random forest (RF) methods dominating, followed by the methods of support vector machine (SVM) and artificial neural network (ANN). Machine learning ensembles have also been found to help with aspects of computational complexity, such as performance and training times. Furthermore, compared to mathematical model techniques, machine learning approaches achieve higher accuracies, according to our research. As a result, it is advised that academics employ new machine learning techniques while also considering mathematical model approaches to predicting groundwater level changes
Special Issue: Innovative mobile technology
International audienc
Deep Neural Network for Lung Image Segmentation on Chest X-ray
COVID-19 patients require effective diagnostic methods, which are currently in short supply. In this study, we explained how to accurately identify the lung regions on the X-ray scans of such people’s lungs. Images from X-rays or CT scans are critical in the healthcare business. Image data categorization and segmentation algorithms have been developed to help doctors save time and reduce manual errors during the diagnosis. Over time, CNNs have consistently outperformed other image segmentation algorithms. Various architectures are presently based on CNNs such as ResNet, U-Net, VGG-16, etc. This paper merged the U-Net image segmentation and ResNet feature extraction networks to construct the ResUNet++ network. The paper’s novelty lies in the detailed discussion and implementation of the ResUNet++ architecture in lung image segmentation. In this research paper, we compared the ResUNet++ architecture with two other popular segmentation architectures. The ResNet residual block helps us in lowering the feature reduction issues. ResUNet++ performed well compared with the UNet and ResNet architectures by achieving high evaluation scores with the validation dice coefficient (96.36%), validation mean IoU (94.17%), and validation binary accuracy (98.07%). The novelty of this research paper lies in a detailed discussion of the UNet and ResUNet architectures and the implementation of ResUNet++ in lung images. As per our knowledge, until now, the ResUNet++ architecture has not been performed on lung image segmentation. We ran both the UNet and ResNet models for the same amount of epochs and found that the ResUNet++ architecture achieved higher accuracy with fewer epochs. In addition, the ResUNet model gave us higher accuracy (94%) than the UNet model (92%)
- …