10 research outputs found

    Interphases in the electrodes of potassium ion batteries

    Get PDF
    Rechargeable potassium-ion batteries (PIBs) are of great interest as a sustainable, environmentally friendly, and cost-effective energy storage technology. The electrochemical performance of a PIB is closely related to the reaction kinetics of active materials, ionic/electronic transport, and the structural/electrochemical stability of cell components. Alongside the great effort devoted in discovering and optimising electrode materials, recent research unambiguously demonstrates the decisive role of the interphases that interconnect adjacent components in a PIB. Knowledge of interphases is currently less comprehensive and satisfactory compared to that of electrode materials, and therefore, understanding the interphases is crucial to facilitating electrode materials design and advancing battery performance. The present review aims to summarise the critical interphases that dominate the overall battery performance of PIBs, which includes solid-electrolyte interphase, cathode-electrolyte interphase, and solid–solid interphases within composite electrodes, via exploring their formation principles, chemical compositions, and determination of reaction kinetics. State-of-the-art design strategies of robust interphases are discussed and analysed. Finally, perspectives are given to stimulate new ideas and open questions to further the understanding of interphases and the development of PIBs

    Learning to Customize Network Security Rules

    Full text link
    Security is a major concern for organizations who wish to leverage cloud computing. In order to reduce security vulnerabilities, public cloud providers offer firewall functionalities. When properly configured, a firewall protects cloud networks from cyber-attacks. However, proper firewall configuration requires intimate knowledge of the protected system, high expertise and on-going maintenance. As a result, many organizations do not use firewalls effectively, leaving their cloud resources vulnerable. In this paper, we present a novel supervised learning method, and prototype, which compute recommendations for firewall rules. Recommendations are based on sampled network traffic meta-data (NetFlow) collected from a public cloud provider. Labels are extracted from firewall configurations deemed to be authored by experts. NetFlow is collected from network routers, avoiding expensive collection from cloud VMs, as well as relieving privacy concerns. The proposed method captures network routines and dependencies between resources and firewall configuration. The method predicts IPs to be allowed by the firewall. A grouping algorithm is subsequently used to generate a manageable number of IP ranges. Each range is a parameter for a firewall rule. We present results of experiments on real data, showing ROC AUC of 0.92, compared to 0.58 for an unsupervised baseline. The results prove the hypothesis that firewall rules can be automatically generated based on router data, and that an automated method can be effective in blocking a high percentage of malicious traffic.Comment: 5 pages, 5 figures, one tabl

    Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode

    Get PDF
    With graphite currently leading as the most viable anode for potassium-ion batteries (KIBs), other materials have been left relatively under-examined. Transition metal oxides are among these, with many positive attributes such as synthetic maturity, long-term cycling stability and fast redox kinetics. Therefore, to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5 (KTNO) and its rGO nanocomposite (KTNO/rGO) synthesised via solvothermal methods as a high-performance anode for KIBs. Through effective distribution across the electrically conductive rGO, the electrochemical performance of the KTNO nanoparticles was enhanced. The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g-1 and reversible capacity of 97.5 mAh g-1 after 500 cycles at 20 mA g-1, retaining 76.1% of the initial capacity, with an exceptional rate performance of 54.2 mAh g-1 at 1 A g-1. Furthermore, to investigate the attributes of KTNO in-situ XRD was performed, indicating a low-strain material. Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage, with the titanium showing greater redox reversibility than the niobium. This work suggests this low-strain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs

    Enabling intercalation-type TiNb24O62 anode for sodium- and potassium-ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation

    Get PDF
    The key to develop earth-abundant energy storage technologies sodium- and potassium-ion batteries (SIBs and PIBs) is to identify low-cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation-type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation-type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation-type compounds as candidate anodes for large ion batteries

    Carbon materials for Na-S and K-S batteries

    No full text
    Global energy demand is rapidly increasing, and it undoubtedly reflects the importance of high-capacity energy storage systems based on Earth’s abundant resources. The practicality of lithium-ion batteries for large-scale energy storage is less likely to be viable due to the limited sources of lithium and their uneven geographical distribution. Because of the Earth’s abundance of sodium and potassium as well as rich sulfur electrochemistry involving multi-electron transfer, sodium-sulfur (Na-S) and potassium-sulfur (K-S) batteries are promising candidates for large-scale energy storage applications. This review highlights the fundamental battery chemistries and challenges of Na-S and K-S batteries. It discusses the design strategies of cathode, anode, and separator with a focus on the utilization of carbon materials, highlighting the crucial role of carbon in tackling the challenges. Finally, future perspectives are provided, and plausible directions are outlined for the further advancement of Na-S and K-S batteries

    Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes

    No full text
    We report an effective approach of utilizing multiwalled carbon nanotubes (MWCNTs) as an active anode material in sodium ion batteries by expanding the interlayer distance in a few outer layers of multiwalled carbon nanotubes. The performance enhancement was investigated using a density functional tight binding (DFTB) molecular dynamics simulation. It is found that a sodium atom forms a stable bonding with the partially expanded MWCNT (PECNT) with the binding energy of −1.50 eV based on the density functional theory calculation with van der Waals correction, where a sodium atom is caged between the two carbon hexagons in the two consecutive MWCNTs. Wave function and charge density analyses show that this binding is physisorption in nature. This larger exothermic nature of binding energy favors the stable bonding between the PECNT and a sodium atom, and thereby, it helps to enhance the electrochemical performance. In the experimental works, partial opening of the MWCNT with the expanded interlayer has been designed by the well-known Hummer’s method. It has been found that the introduction of functional groups causes a partial opening of the outer few layers of a MWCNT, with the inner core remaining undisturbed. The enhanced performance is due to an expanded interlayer of carbon nanotubes, which provide sufficient active sites for the sodium ions to adsorb as well as to intercalate into the carbon structure. The PECNT shows a high specific capacity of 510 mAh g<sup>–1</sup> at a current density of 20 mA g<sup>–1</sup>, which is about 2.3 times the specific capacity obtained for a pristine MWCNT at the same current density. This specific capacity is higher when compared to other carbon-based materials. The PECNT also shows a satisfactory cyclic stability at a current density of 200 mA g<sup>–1</sup> for 100 cycles. Based on our experimental and theoretical results, an alternative perspective for the storage of sodium ions in MWCNTs is proposed

    Enabling intercalation‐type TiNb24O62 anode for sodium‐ and potassium‐ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation

    No full text
    Abstract The key to develop earth‐abundant energy storage technologies sodium‐ and potassium‐ion batteries (SIBs and PIBs) is to identify low‐cost electrode materials that allow fast and reversible Na+/K+ intercalation. Here, we report an intercalation‐type material TiNb24O62 as a versatile anode for SIBs and PIBs, via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion. The TiNb24O62−x/reduced graphene oxide (rGO) composite anode delivers high reversible capacities (130 mA h g−1 for SIBs and 178 mA h g−1 for PIBs), great rate performance (54 mA h g−1 for SIBs and 37 mA h g−1 for PIBs at 1 A g−1), and superior cycle stability (73.7% after 500 cycles for SIBs and 84% after 300 cycles for PIBs). The performance is among the best results of intercalation‐type metal oxide anodes for SIBs and PIBs. The better performance of TiNb24O62−x/rGO in SIBs than PIBs is due to the better reaction kinetics of the former. Moreover, mechanistic study confirms that the redox activity of Nb4+/5+ is responsible for the reversible intercalation of Na+/K+. Our results suggest that TiNb24O62−x/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation‐type compounds as candidate anodes for large ion batteries

    Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes

    No full text
    We report an effective approach of utilizing multiwalled carbon nanotubes (MWCNTs) as an active anode material in sodium ion batteries by expanding the interlayer distance in a few outer layers of multiwalled carbon nanotubes. The performance enhancement was investigated using a density functional tight binding (DFTB) molecular dynamics simulation. It is found that a sodium atom forms a stable bonding with the partially expanded MWCNT (PECNT) with the binding energy of −1.50 eV based on the density functional theory calculation with van der Waals correction, where a sodium atom is caged between the two carbon hexagons in the two consecutive MWCNTs. Wave function and charge density analyses show that this binding is physisorption in nature. This larger exothermic nature of binding energy favors the stable bonding between the PECNT and a sodium atom, and thereby, it helps to enhance the electrochemical performance. In the experimental works, partial opening of the MWCNT with the expanded interlayer has been designed by the well-known Hummer’s method. It has been found that the introduction of functional groups causes a partial opening of the outer few layers of a MWCNT, with the inner core remaining undisturbed. The enhanced performance is due to an expanded interlayer of carbon nanotubes, which provide sufficient active sites for the sodium ions to adsorb as well as to intercalate into the carbon structure. The PECNT shows a high specific capacity of 510 mAh g<sup>–1</sup> at a current density of 20 mA g<sup>–1</sup>, which is about 2.3 times the specific capacity obtained for a pristine MWCNT at the same current density. This specific capacity is higher when compared to other carbon-based materials. The PECNT also shows a satisfactory cyclic stability at a current density of 200 mA g<sup>–1</sup> for 100 cycles. Based on our experimental and theoretical results, an alternative perspective for the storage of sodium ions in MWCNTs is proposed

    Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes

    No full text
    We report an effective approach of utilizing multiwalled carbon nanotubes (MWCNTs) as an active anode material in sodium ion batteries by expanding the interlayer distance in a few outer layers of multiwalled carbon nanotubes. The performance enhancement was investigated using a density functional tight binding (DFTB) molecular dynamics simulation. It is found that a sodium atom forms a stable bonding with the partially expanded MWCNT (PECNT) with the binding energy of −1.50 eV based on the density functional theory calculation with van der Waals correction, where a sodium atom is caged between the two carbon hexagons in the two consecutive MWCNTs. Wave function and charge density analyses show that this binding is physisorption in nature. This larger exothermic nature of binding energy favors the stable bonding between the PECNT and a sodium atom, and thereby, it helps to enhance the electrochemical performance. In the experimental works, partial opening of the MWCNT with the expanded interlayer has been designed by the well-known Hummer’s method. It has been found that the introduction of functional groups causes a partial opening of the outer few layers of a MWCNT, with the inner core remaining undisturbed. The enhanced performance is due to an expanded interlayer of carbon nanotubes, which provide sufficient active sites for the sodium ions to adsorb as well as to intercalate into the carbon structure. The PECNT shows a high specific capacity of 510 mAh g<sup>–1</sup> at a current density of 20 mA g<sup>–1</sup>, which is about 2.3 times the specific capacity obtained for a pristine MWCNT at the same current density. This specific capacity is higher when compared to other carbon-based materials. The PECNT also shows a satisfactory cyclic stability at a current density of 200 mA g<sup>–1</sup> for 100 cycles. Based on our experimental and theoretical results, an alternative perspective for the storage of sodium ions in MWCNTs is proposed
    corecore