70 research outputs found

    Pieri rules for the K-theory of cominuscule Grassmannians

    Full text link
    We prove Pieri formulas for the multiplication with special Schubert classes in the K-theory of all cominuscule Grassmannians. For Grassmannians of type A this gives a new proof of a formula of Lenart. Our formula is new for Lagrangian Grassmannians, and for orthogonal Grassmannians it proves a special case of a conjectural Littlewood-Richardson rule of Thomas and Yong. Recent work of Thomas and Yong and of E. Clifford has shown that the full Littlewood-Richardson rule for orthogonal Grassmannians follows from the Pieri case proved here. We describe the K-theoretic Pieri coefficients both as integers determined by positive recursive identities and as the number of certain tableaux. The proof is based on a computation of the sheaf Euler characteristic of triple intersections of Schubert varieties, where at least one Schubert variety is special

    Health Care Equity Through Intelligent Edge Computing and Augmented Reality/Virtual Reality: A Systematic Review

    Get PDF
    Intellectual capital is a scarce resource in the healthcare industry. Making the most of this resource is the first step toward achieving a completely intelligent healthcare system. However, most existing centralized and deep learning-based systems are unable to adapt to the growing volume of global health records and face application issues. To balance the scarcity of healthcare resources, the emerging trend of IoMT (Internet of Medical Things) and edge computing will be very practical and cost-effective. A full examination of the transformational role of intelligent edge computing in the IoMT era to attain health care equity is offered in this research. Intelligent edge computing-aided distribution and collaborative information management is a possible approach for a long-term digital healthcare system. Furthermore, IEC (Intelligent Edge Computing) encourages digital health data to be processed only at the edge, minimizing the amount of information exchanged with central servers/the internet. This significantly increases the privacy of digital health data. Another critical component of a sustainable healthcare system is affordability in digital healthcare. Affordability in digital healthcare is another key component of a sustainable healthcare system. Despite its importance, it has received little attention due to its complexity. In isolated and rural areas where expensive equipment is unavailable, IEC with AR / VR, also known as edge device shadow, can play a significant role in the inexpensive data collection process. Healthcare equity becomes a reality by combining intelligent edge device shadows and edge computing

    Triangular numbers

    Get PDF
    Here mathematician Carl Friedrich Gauss (1777–1855). Hoping to get some rest while keeping the students is a popular story about the famous German busy, Gauss’s mathematics teacher asked them to add up the numbers 1 + 2 + · · · + 100. The seven-year-old Gauss instantly found out the answer to be 5050. (Comment. The historical accuracy of this legendary story is questionable. In [1], Brian Hayes tries to find the origins of this story.

    A rare and independent association of Right Atrial Myxoma with Immune Thrombocytopenic Purpura

    Get PDF
    Primary tumours of the heart are rare and the most common benign ones are myxomas.  The clinical features are varied and include a myriad of presenting symptoms like embolic, constitutional, cardiac and also symptoms due to obstruction. Right atrial myxomas are very rarely seen when compared with left atrium. Such myxomas independently co existing with Immune Thrombocytopenic Purpura (ITP) is even rarer and we now present one such case in with right atrial myxoma was associated with ITP and was managed surgically. This case emphasises the fact that ITP can co-exist with myxoma and should be borne in mind when treating such patients surgically

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore