25 research outputs found

    Twist-bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens

    Get PDF
    The paper reviews assignment of the low-temperature nematic phase observed in simple bimesogenic or dimeric systems based on cyanobiphenyls and difluoroterphenyls to the twist-bend nematic phase, NTB, using a range of experimental techniques. These include DSC, X-rays, Polarising Microscopy, electro-optics, birefringence and measurements of the electroclinic effect arising from flexoelectricity. An emphasis is laid on the observations of the chiral domains of opposite handedness at zero field in an otherwise achiral liquid crystalline system in this phase. These observations are a direct consequence of the structure of the twist-bend phase predicted by Ivan Dozov for achiral bent core molecules. The paper reviews the electro-optic phenomena and the observed electroclinic effect and how these observations assign it as the NTB phase. Results of the nanoscale helical pitch measurements using freeze-fracture microscopy are reviewed and discussed briefly. Results of the measurements of elastic constants especially close to the N–NTB transition are also reviewed

    Brownian Motion in a Periodic Potential: Application to Dielectric Relaxation

    Get PDF
    The relaxational dynamics of a planor rotator in an M-fold cosine potential subject to a random torque is investigated in detail. For the case of a periodic potential with large barrier height, the numerical results of the relaxation dynamics are in complete agreement with an approximate analytical solution. The latter is derived on assuming a harmonic potential at the bottom of the potential minima and a large time-scale separation between the short-time libration inside each potential minima and long-time hopping phenomenon over the potential barriers. For M ≥ 2, the hopping phenomenon is found to be the dominant feature of the orientational auto-correlation function. The average hopping time is explained satisfactorily in terms of the Kramers activation rate theory. In particular a complete agreement is found between the numerical results of the escape rate and those obtained from the modified Kramers predictions valid for low friction coefficient. The cosine model is applied to the study of dielectric spectroscopy. The particle mobility and the complex permittivity of a dielectric material are calculated by numerical solutions for rotational velocity and orientational auto-correction functions, respectively. The main features of the experimental observables are determined analytically and compared to the corresponding numerical results. The applicability of the plane rotator model to dielectric spectroscopy is also discussed

    Spontaneous Mirror Symmetry Breaking and Chiral Segregation in the Achiral Ferronematic Compound DIO

    Get PDF
    An achiral compound, DIO, known to exhibit three nematic phases namely N, NX and NF, is studied by polarizing microscopy and electro-optics for different surface conditions in confinement. The high temperature N phase assigned initially as a conventional nematic phase, shows two additional unusual features: the optical activity and the linear electro-optic response related to the polar nature of this phase. An appearance of chiral domains is explained by the spontaneous symmetry breaking arising from the saddle-splay elasticity and followed by the formation of helical domains of the opposite chirality. This is the first example of helical segregation observed in calamitic non-chiral molecules in the nematic phase. As reported previously, the ferronematic NF shows strong polar azimuthal surface interaction energy which stabilizes a homogeneous structure in planar aligned LC cells rubbed parallel and exhibits a twisted structure in cells with antiparallel buffing. The transmission spectra are simulated using Berreman\u27s 4 × 4 matrix method. The observed agreement between the experimental and the simulated spectra quantitatively confirms the presence of twisted structures in antiparallel rubbed cells

    Formation and Development of Nanometer-sized Cybotactic Clusters in Bent-core Nematic Liquid Crystalline Compounds

    Get PDF
    Two homologue achiral bent-core liquid crystals (LCs), BCN66 and BCN84, in their nematic phases are studied by dielectric spectroscopy in the frequency range 10 Hz–10 MHz. In each of these compounds, two relaxation processes are identified and assigned to (i) collective dynamics of molecules in nanometer-sized cybotactic clusters and (ii) individual molecular relaxations, in the ascending order of frequency of the probe field. The temperature and the bias electric field dependence of the dielectric strength and relaxation frequency for these processes are shown to give rise to sharpness in cluster boundaries, increased size and volume fraction in the LC nematic phase. The effect of the bias field on the LC cell is similar to reducing its temperature; both variables increase the cluster size and volume fraction and give rise to sharp cluster boundaries. The findings confirm that dielectric spectroscopy is a powerful and an extremely useful technique to provide a deeper understanding of the mechanism of cybotactic cluster formation in the isotropic liquid and the nematic phase of LCs as a function of temperature and the bias field

    Two mechanisms for the formation of the ferronematic phase studied by dielectric spectroscopy

    Get PDF
    A non-chiral ferroelectric nematic compound with a 1,3-dioxane unit in the mesogenic core called 2,3′,4′,5′-tetrafluoro-[1,1′-biphenyl]-4-yl 2,6-difluoro-4-(5-propyl-1,3-dioxan-2-yl) benzoate (DIO) was studied by dielectric spectroscopy in the frequency range 0.1 Hz–10 MHz over a wide range of temperatures. The compound exhibits three nematic phases on cooling from the isotropic phase, i.e., the ordinary paraelectric nematic N; the intermediate nematic NX and the ferroelectric NF phase. The least frequency process is due to the dynamics of ions. The middle frequency relaxation process P1 is like as observed in other ferronematic compounds and this mode is a continuation of the molecular flip-flop motion in the isotropic phase to the collective dynamics of dipoles which are strongly coupled with the splay fluctuations in nematic phases. In addition to this process, DIO shows an additional collective relaxation process P2 at higher frequencies both in the N and the NX phases. This mode originates from the polar/chiral molecules of the opposite chirality, these arise from the spontaneous symmetry breaking of achiral mesogens in the N phase. Both collective processes, P1 and P2, show soft mode-like characteristic behavior on cooling from the N to the NX-NF phase transition temperature and are shown to contribute independently to the formation of the ferronematic NF phase

    Orientational order of a ferroelectric liquid crystal with small layer contraction

    Get PDF
    We present spectroscopic and optical studies of a non-layer-shrinkage ferroelectric liquid crystal DSiKN65. The orientational order parameters S, measured with respect to the smectic layer normal using IR spectroscopy on a sample aligned homeotropically, does not exhibit any significant variation between the smectic-A* and smectic-C* phases. In contrast the birefringence of a planar homogenous sample abruptly increases at the smectic-A* to smectic-C* transition. This suggests a general increase in the orientational order, which can be described by the orientational order parameters S\u27 defined with respect to the director. Simultaneous increase of S\u27 and the director tilt θ may explain the low shrinkage of smectic layers, which is consistent with recent theoretical models describing the smectic-A* to smectic-C* transition for such materials

    Characterization of the Submicrometer Hierarchy Levels in the Twist-Bend Nematic Phase with Nanometric Helices via Photopolymerization. Explanation for the Sign Reversal in the Polar Response

    Get PDF
    Photopolymerization of a reactive mesogen mixed with a mesogenic dimer, shown to exhibit the twist-bend nematic phase (NTB), reveals the complex structure of the self-deformation patterns observed in planar cells. The polymerized reactive mesogen retains the structure formed by liquid crystalline molecules in the twist bend phase, thus enabling its observation by scanning electron microscopy (SEM). Hierarchical ordering scales ranging from tens of nanometers to micrometers are imaged in detail. Submicron features, anticipated from earlier X-ray experiments, are visualized directly. In the self-deformation stripes formed in the NTB phase, the average director field is found tilted in the cell plane by an angle of up to 45° from the cell rubbing direction. This tilt explains the sign inversion being observed inthe electro-optical studie

    Nematic twist-bend phase with nanoscale modulation of molecular orientation

    Get PDF
    A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt)

    Spontaneous Helix Formation in Non-Chiral Bent-Core Liquid Crystals with Fast Linear Electro-Optic Effect

    Get PDF
    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. les
    corecore