117 research outputs found

    An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    Get PDF
    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HSDNA) and subsequent backfill with 11mercapto1undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HSDNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HSDNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements

    Infrared and Raman spectroscopy for purity assessment of extracellular vesicles

    Get PDF
    Extracellular vesicles (EVs) are a complex and heterogeneous population of nanoparticles involved in cell-to-cell communication. Recently, numerous studies have indicated the potential of EVs as therapeutic agents, drug carriers and diagnostic tools. However, the results of these studies are often difficult to evaluate, since different characterization methods are used to assess the purity, physical and biochemical characteristics of the EV samples. In this study, we compared four methods for the EV sample characterization and purity assessment: i) the particle-to-protein ratio based on particle analyses with nanoparticle tracking and protein concentration by bicinchoninic acid assay, ii) Western Blot analysis for specific EV biomarkers, iii) two spectroscopic lipid-to protein ratios by either the attenuated total reflection Fourier transform infrared (ATR-FTIR) or Raman spectroscopy. The results confirm the value of Raman and ATR-FTIR spectroscopy as robust, fast and operator independent tools that require only a few microliters of EV sample. We propose that the spectroscopic lipid-to protein (Li/Pr) ratios are reliable parameters for the purity assessment of EV preparations. Moreover, apart from determining protein concentrations, we show that ATR-FTIR spectroscopy can also be used for indirect measurements of EV concentrations. Nevertheless, the Li/Pr ratios do not represent full characterization of the EV preparations. For a complete characterization of selected EV preparations, we recommend also additional use of particle size distribution and EV biomarker analysis.Peer reviewe

    Ionic liquids affect the adsorption of liposomes onto cationic polyelectrolyte coated silica evidenced by quartz crystal microbalance

    Get PDF
    The worldwide use of ionic liquids (ILs) is steadily increasing, and even though they are often referred to as "green solvents" they have been reported to be toxic, especially toward aquatic organisms. In this work, we thoroughly study two phosphonium ILs; octyltributylphosphonium chloride ([P-8444]CI)and tributyl(tetradecyl)phosphonium chloride ([P-14444]CI). Firstly, the critical micelle concentrations (CMCs) of the ILs were determined with fluorescence spectroscopy and the optical pendant drop method in order to gain an understanding of the aggregation behavior of the ILs. Secondly, a biomimicking system of negatively charged unilamellar liposomes was used in order to study the effect of the ILs on biomembranes. Changes in the mechanical properties of adsorbed liposomes were determined by quartz crystal microbalance (QCM) measurements with silica coated quartz crystal sensors featuring a polycation layer. The results confirmed that both ILs were able to incorporate and alter the biomembrane structure. The membrane disrupting effect was emphasized with an increasing concentration and alkyl chain length of the ILs. In the extreme case, the phospholipid membrane integrity was completely compromised. (C) 2015 Elsevier B.V. All rights reserved.Peer reviewe

    Microvesicle- and exosome- mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells

    Get PDF
    Background: Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. Methods: EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Results: Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Conclusions: Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. (C) 2015 The Authors. Published by Elsevier B.V.Peer reviewe

    Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance

    Get PDF
    The development of in vitro cell models that mimic cell behavior in organs and tissues is an approach that may have remarkable impact on drug testing and tissue engineering applications in the future. Plant based, chemically unmodified cellulose nanofibrils (CNF) hydrogel is a natural, abundant, and biocompatible material that has attracted great attention for biomedical applications, in particular for threedimensional cell cultures. However, the mechanisms of cell-CNF interactions and factors that affect these interactions are not yet fully understood. In this work, multi-parametric surface plasmon resonance (SPR) was used to study how the adsorption of human hepatocellular carcinoma (HepG2) cells on CNF films is affected by the different proteins and components of the cell medium. Both human recombinant laminin 521 (LN-521, a natural protein of the extracellular matrix) and poly -L-lysine (PLL) adsorbed on CNF films and enhanced the attachment of HepG2 cells. Cell medium components (glucose and amino acids) and serum proteins (fetal bovine serum, FBS) also adsorbed on both bare CNF and on protein-coated CNF substrates. However, the adsorption of FBS hindered the attachment of HepG2 cells to LN-521and PLLcoated CNF substrates, suggesting that serum proteins blocked the formation of laminin-integrin bonds and decreased favorable PLL-cell electrostatic interactions. This work sheds light on the effect of different factors on cell attachment to CNF, paving the way for the utilization and optimization of CNF-based materials for different tissue engineering applications. (C) 2020 The Authors. Published by Elsevier Inc.Peer reviewe

    Characterization of membrane–foulant interactions with novel combination of Raman spectroscopy, surface plasmon resonance and molecular dynamics simulation

    Get PDF
    Adsorptive fouling, by phenolic compounds, is a serious issue regarding the development and use of membrane based filtration technologies for water purification and wastewater treatment. We have developed a novel, combined, protocol of Raman spectroscopy and surface plasmon resonance (SPR) experiments, along with molecular dynamics (MD) simulation, to study the interaction of vanillin, a model phenolic compound, with the polyethersulfone (PES) surface of a membrane. The adsorption of vanillin to the PES surface was found to be highly pH dependent; the source of this was determined, by MD simulation, to be the stronger interaction with the protonated form of vanillin, predominant at low pH. Vanillin interacts with the PES surface, both through entropy driven, hydrophobic, interactions and, for the case of the protonated form, H-bonding of the hydroxyl group with the sulphur oxygens of the PES molecules. In addition to general insight into the fouling process that can be used to develop new methods to inhibit adsorptive fouling, our results also elucidate the specific interaction of the PES membrane with vanillin that can be used in the development of anti-fouling coatings, based on the structure of vanillin.Peer reviewe
    • …
    corecore