6 research outputs found

    Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

    Get PDF
    We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most k. We call this the Dyck_{k,n} problem. We prove a lower bound of ?(c^k ?n), showing that the complexity of this problem increases exponentially in k. Here n is the length of the word. When k is a constant, this is interesting as a representative example of star-free languages for which a surprising O?(?n) query quantum algorithm was recently constructed by Aaronson et al. [Scott Aaronson et al., 2018]. Their proof does not give rise to a general algorithm. When k is not a constant, Dyck_{k,n} is not context-free. We give an algorithm with O(?n(log n)^{0.5k}) quantum queries for Dyck_{k,n} for all k. This is better than the trival upper bound n for k = o({log(n)}/{log log n}). Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing. By embedding the "balanced parentheses" problem into the grid, we show a lower bound of ?(n^{1.5-?}) for the directed 2D grid and ?(n^{2-?}) for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions

    Exact affine counter automata

    Get PDF
    © F. Blanchet-Sadri & S. Osborne. We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affine, quantum or classical finite state models in polynomial time, can be recognized by affine counter automata with one-sided bounded-error in realtime

    Exact affine counter automata

    No full text
    © F. Blanchet-Sadri & S. Osborne. We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affine, quantum or classical finite state models in polynomial time, can be recognized by affine counter automata with one-sided bounded-error in realtime

    Quantum lower and upper bounds for 2D-grid and dyck language

    No full text
    © Nathalie Bertrand; licensed under Creative Commons License CC-BY 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most k. We call this the Dyckk,n problem. We prove a lower bound of Ω(ck√n), showing that the complexity of this problem increases exponentially in k. Here n is the length of the word. When k is a constant, this is interesting as a representative example of star-free languages for which a surprising Õ(√n) query quantum algorithm was recently constructed by Aaronson et al. [1]. Their proof does not give rise to a general algorithm. When k is not a constant, Dyckk,n is not context-free. We give an algorithm with O(√n(log n)0.5k) quantum queries for Dyckk,n for all k. This is better than the trival upper bound n for k = o( loglog(n)/log n). Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing. By embedding the “balanced parentheses” problem into the grid, we show a lower bound of Ω(n1.5−ε) for the directed 2D grid and Ω(n2−ε) for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions
    corecore