89 research outputs found

    Correlation between Fermi surface transformations and superconductivity in the electron-doped high-TcT_c superconductor Nd2−x_{2-x}Cex_xCuO4_4

    Full text link
    Two critical points have been revealed in the normal-state phase diagram of the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4 by exploring the Fermi surface properties of high quality single crystals by high-field magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas effect shows that the weak superlattice potential responsible for the Fermi surface reconstruction in the overdoped regime extrapolates to zero at the doping level xc=0.175x_c = 0.175 corresponding to the onset of superconductivity. Second, the high-field Hall coefficient exhibits a sharp drop right below optimal doping xopt=0.145x_{\mathrm{opt}} = 0.145 where the superconducting transition temperature is maximum. This drop is most likely caused by the onset of long-range antiferromagnetic ordering. Thus, the superconducting dome appears to be pinned by two critical points to the normal state phase diagram.Comment: 9 pages; 7 figures; 1 tabl

    Protected superconductivity at the boundaries of charge-density-wave domains

    Get PDF
    Solid 4He may acquire superfluid characteristics due to the frustration of the solid phase at grain boundaries. Here, introducing a negative-U generalized Hubbard model and a coarse-grained semiclassical pseudospin model, we show that an analogous effect occurs in systems with competition among charge-density-waves (CDW) and superconductivity in the presence of disorder, as cuprate or dichalcogenide superconductors. The CDW breaks apart in domains with topologically protected filamentary superconductivity at the interfaces. Our transport measurements, carried out in underdoped La2-x Sr x CuO4, with the magnetic field acting as a control parameter, are shown to be in excellent agreement with our theoretical prediction. Assuming superconductivity and CDW phases have similar energies, at intermediate temperatures, the magnetic field drives the system from a fluctuating superconductor to a CDW as expected in the clean limit. Lowering the temperature, the expected clean quantum critical point is avoided and a filamentary phase appears, analogous to 'glassy' supersolid phenomena in 4He. The transition line ends at a second quantum critical point at high-fields. Within our scenario, the filamentary superconducting phase is parasitic with CDW and bulk superconducting phases playing the role of primary competing order parameters

    Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1–2 locus of Aspergillus niger

    Get PDF
    BackgroundAspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65.ResultsThe genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1–1 locus of ATCC 1015 compared to the MAT1–2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1–1 locus and the other half a MAT1–2 locus. The genomic organization of the MAT1–2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1–1 locus is flipped in all sequenced strains of A. niger.ConclusionsThis study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1–1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual.Microbial Biotechnolog

    Stripe order and quasiparticle Nernst effect in cuprate superconductors

    Get PDF
    After a brief review of current ideas on stripe order in cuprate high-temperature superconductors, we discuss the quasiparticle Nernst effect in the cuprates, with focus on its evolution in non-superconducting stripe and related nematic states. In general, we find the Nernst signal to be strongly enhanced by nearby van-Hove singularities and Lifshitz transitions in the band structure, implying that phases with translation symmetry breaking often lead to a large quasiparticle Nernst effect due to the presence of multiple small Fermi pockets. Open orbits may contribute to the Nernst signal as well, but do so in a strongly anisotropic fashion. We discuss our results in the light of recent proposals for a specific Lifshitz transition in underdoped YBCO and make predictions for the doping dependence of the Nernst signal.Comment: 10 pages, 4 figs, article prepared for a special issue of New J Phy

    Evidence for antiferromagnetism coexisting with charge order in the trilayer cuprate HgBa2_2Ca2_2Cu3_3O8+δ_{8+ \delta}

    Full text link
    Multilayered cuprates possess not only the highest superconducting temperature transition but also offer a unique platform to study disorder-free CuO2_2 planes and the interplay between competing orders with superconductivity. Here, we study the underdoped trilayer cuprate HgBa2_2Ca2_2Cu3_3O8+δ_{8+ \delta} and we report the first quantum oscillation and Hall effect measurements in magnetic field up to 88 T. A careful analysis of the complex spectra of quantum oscillations strongly supports the coexistence of an antiferromagnetic order in the inner plane and a charge order in the outer planes. The presence of an ordered antiferromagnetic metallic state that extends deep in the superconducting phase is a key ingredient that supports magnetically mediated pairing interaction in cuprates.Comment: 6+5 pages, 4+6 figure

    Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport

    Full text link
    We report on the study of the Fermi surface of the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_{4} by measuring the interlayer magnetoresistance as a function of the strength and orientation of the applied magnetic field. We performed experiments in both steady and pulsed magnetic fields on high-quality single crystals with Ce concentrations of x=0.13x=0.13 to 0.17. In the overdoped regime of x>0.15x > 0.15 we found both semiclassical angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH) oscillations. The combined AMRO and SdH data clearly show that the appearance of fast SdH oscillations in strongly overdoped samples is caused by magnetic breakdown. This observation provides clear evidence for a reconstructed multiply-connected Fermi surface up to the very end of the overdoped regime at x≃0.17x\simeq 0.17. The strength of the superlattice potential responsible for the reconstructed Fermi surface is found to decrease with increasing doping level and likely vanishes at the same carrier concentration as superconductivity, suggesting a close relation between translational symmetry breaking and superconducting pairing. A detailed analysis of the high-resolution SdH data allowed us to determine the effective cyclotron mass and Dingle temperature, as well as to estimate the magnetic breakdown field in the overdoped regime.Comment: 23 pages, 8 figure

    Comments on the d-wave pairing mechanism for cuprate high TcT_c superconductors: Higher is different?

    Full text link
    The question of pairing glue for the cuprate superconductors (SC)is revisited and its determination through the angle resolved photo-emission spectroscopy (ARPES) is discussed in detail. There are two schools of thoughts about the pairing glue question: One argues that superconductivity in the cuprates emerges out of doping the spin singlet resonating valence bond (RVB) state. Since singlet pairs are already formed in the RVB state there is no need for additional boson glue to pair the electrons. The other instead suggests that the d-wave pairs are mediated by the collective bosons like the conventional low TcT_c SC with the alteration that the phonons are replaced by another kind of bosons ranging from the antiferromagnetic (AF) to loop current fluctuations. An approach to resolve this dispute is to determine the frequency and momentum dependences of the diagonal and off-diagonal self-energies directly from experiments like the McMillan-Rowell procedure for the conventional SC. In that a simple d-wave BCS theory describes superconducting properties of the cuprates well, the Eliashberg analysis of well designed high resolution experimental data will yield the crucial frequency and momentum dependences of the self-energies. This line of approach using ARPES are discussed in more detail in this review, and some remaining problems are commented.Comment: Invited review article published in the Journal of Korean Physical Society; several typos corrected and a few comments and references adde

    Hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet

    Full text link
    Superconductivity in layered copper-oxide compounds emerges when charge carriers are added to antiferromagnetically-ordered CuO2 layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to super-conductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual `hour-glass' feature in the momentum-resolved magnetic spectrum, present in a wide range of superconducting and non-superconducting materials. There is no widely-accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, an idea supported by measurements on stripe-ordered La1.875Ba0.125CuO4. However, many copper oxides without stripe order also exhibit an hour-glass spectrum$. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper-oxide superconductors arises from fluctuating stripes.Comment: 13 pages, 4 figures, to appear in Natur

    Synchrotron x ray scattering study of charge density wave order in HgBa2CuO4 delta

    Get PDF
    We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa2_2CuO4+δ_{4+\delta} (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa2_2Cu3_3O6+δ_{6+\delta}, the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic cc axis of up to 16 T, provides information about the form factor of the CDW order. As expected from the single-CuO2_2-layer structure of Hg1201, the CDW correlations vanish at half-integer values of LL and appear to be peaked at integer LL. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO2_2 layers
    • …
    corecore