75 research outputs found

    Design of a novel X-section architecture for FX-correlator in large interferometers : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Auckland, New Zealand

    Get PDF
    Figures 2-12 and 2-17 are re-used under CC BY-NC 4.0 International & CC 3.0 Unported Licences respectively.Published journal papers I-III in the Appendices were removed because they are subject to copyright restrictions.In large radio-interferometers it is considerably challenging to perform signal correlations at input data-rates of over 11 Tbps, which involves vast amount of storage, memory bandwidth and computational hardware. The primary objective of this research work is to focus on reducing the memory-access and design complexity in matrix architectural Big Data processing of the complex X-section of an FX-correlator employed in large array radio-telescopes. This thesis presents a dedicated correlator-system-multiplier-and -accumulator (CoSMAC) cell architecture based on the real input samples from antenna arrays which produces two 16-bit complex multiplications in the same clock cycle. The novel correlator cell optimization is achieved by utilizing the flipped mirror relationship between Discrete Fourier transform (DFT) samples owing to the symmetry and periodicity of the DFT coefficient vectors. The proposed CoSMAC structure is extended to build a new processing element (PE) which calculates both cross- correlation visibilities and auto-correlation functions simultaneously. Further, a novel mathematical model and a hardware design is derived to calculate two visibilities per baseline for the Quadrature signals (IQ sampled signals, where I is In-phase signal and Q is the 90 degrees phase shifted signal) named as Processing Element for IQ sampled signals (PE_IQ). These three proposed dedicated correlator cells minimise the number of visibility calculations in a baseline. The design methodology also targets the optimisation of the multiplier size in order to reduce the power and area further in the CoSMAC, PE and PE_IQ. Various fast and efficient multiplier algorithms are compared and combined to achieve a novel multiplier named Modified-Booth-Wallace-Multiplier and implemented in the CoSMAC and PE cells. The dedicated multiplier is designed to mostly target the area and power optimisations without degrading the performance. The conventional complex-multiplier-and-accumulators (CMACs) employed to perform the complex multiplications are replaced with these dedicated ASIC correlator cells along with the optimized multipliers to reduce the overall power and area requirements in a matrix correlator architecture. The proposed architecture lowers the number of ASIC processor cells required to calculate the overall baselines in an interferometer by eliminating the redundant cells. Hence the new matrix architectural minimization is very effective in reducing the hardware complexity by nearly 50% without affecting the overall speed and performance of very large interferometers like the Square Kilometre Array (SKA)

    Deep Reinforcement Learning for Power Trading

    Full text link
    The Dutch power market includes a day-ahead market and an auction-like intraday balancing market. The varying supply and demand of power and its uncertainty induces an imbalance, which causes differing power prices in these two markets and creates an opportunity for arbitrage. In this paper, we present collaborative dual-agent reinforcement learning (RL) for bi-level simulation and optimization of European power arbitrage trading. Moreover, we propose two novel practical implementations specifically addressing the electricity power market. Leveraging the concept of imitation learning, the RL agent's reward is reformed by taking into account prior domain knowledge results in better convergence during training and, moreover, improves and generalizes performance. In addition, tranching of orders improves the bidding success rate and significantly raises the P&L. We show that each method contributes significantly to the overall performance uplifting, and the integrated methodology achieves about three-fold improvement in cumulative P&L over the original agent, as well as outperforms the highest benchmark policy by around 50% while exhibits efficient computational performance

    An openflow-based approach to failure detection and protection for a multicasting tree

    Get PDF
    Software Defined Networking (SDN) has received considerable attention for both experimental and real networks. The programmability of the centralized control plane utilizes the global view of the network to provide better solutions for complex problems in SDN. This results in an increase in robustness and reliability of network functions running in SDN. This paper is motivated by recent advancement in SDN and increasing popularity of multicasting applications by proposing a technique to increase the resiliency of multicasting in SDN. Multicasting is a group communication technology, which uses the network infrastructure efficiently by sending the data only once from one or multiple sources to a group of receivers. Multicasting applications, e.g., live video streaming and video conferencing, are popular and delay sensitive applications in the Internet. Failures in the ongoing multicast session can cause packet losses and delay and hence affect quality of service (QoS). In this paper, we present a technique to protect a multicasting tree constructed by Openflow switches in SDN. The proposed algorithm can detect link or node failures from the multicasting tree and then determines which part of the multicasting tree requires changes in the flow table to recover from the failure. We also implement a prototype of the algorithm in the POX control

    Autonomous Crop Row Guidance Using Adaptive Multi-ROI in Strawberry Fields

    Get PDF
    Automated robotic platforms are an important part of precision agriculture solutions for sustainable food production. Agri-robots require robust and accurate guidance systems in order to navigate between crops and to and from their base station. Onboard sensors such as machine vision cameras offer a flexible guidance alternative to more expensive solutions for structured environments such as scanning lidar or RTK-GNSS. The main challenges for visual crop row guidance are the dramatic differences in appearance of crops between farms and throughout the season and the variations in crop spacing and contours of the crop rows. Here we present a visual guidance pipeline for an agri-robot operating in strawberry fields in Norway that is based on semantic segmentation with a convolution neural network (CNN) to segment input RGB images into crop and not-crop (i.e., drivable terrain) regions. To handle the uneven contours of crop rows in Norway’s hilly agricultural regions, we develop a new adaptive multi-ROI method for fitting trajectories to the drivable regions. We test our approach in open-loop trials with a real agri-robot operating in the field and show that our approach compares favourably to other traditional guidance approaches
    • …
    corecore