165 research outputs found

    Flood trends in Europe: are changes in small and big floods different?

    Get PDF
    Abstract. Recent studies have revealed evidence of trends in the median or mean flood discharge in Europe over the last 5 decades, with clear and coherent regional patterns. The aim of this study is to assess whether trends in flood discharges also occurred for larger return periods, accounting for the effect of catchment scale. We analyse 2370 flood discharge records, selected from a newly available pan-European flood database, with record length of at least 40 years over the period 1960–2010 and with contributing catchment area ranging from 5 to 100 000 km2. To estimate regional flood trends, we use a non-stationary regional flood frequency approach consisting of a regional Gumbel distribution, whose median and growth factor can vary in time with different strengths for different catchment sizes. A Bayesian Markov chain Monte Carlo (MCMC) approach is used for parameter estimation. We quantify regional trends (and the related sample uncertainties), for floods of selected return periods and for selected catchment areas, across Europe and for three regions where coherent flood trends have been identified in previous studies. Results show that in northwestern Europe the trends in flood magnitude are generally positive. In small catchments (up to 100 km2), the 100-year flood increases more than the median flood, while the opposite is observed in medium and large catchments, where even some negative trends appear, especially in northwestern France. In southern Europe flood trends are generally negative. The 100-year flood decreases less than the median flood, and, in the small catchments, the median flood decreases less compared to the large catchments. In eastern Europe the regional trends are negative and do not depend on the return period, but catchment area plays a substantial role: the larger the catchment, the more negative the trend

    Flood trends in Europe: Are changes in small and big floods different?

    Get PDF
    Recent studies have revealed evidence of trends in the median or mean flood discharge in Europe over the last 5 decades, with clear and coherent regional patterns. The aim of this study is to assess whether trends in flood discharges also occurred for larger return periods, accounting for the effect of catchment scale. We analyse 2370 flood discharge records, selected from a newly available pan-European flood database, with record length of at least 40 years over the period 1960-2010 and with contributing catchment area ranging from 5 to 100 000 km2. To estimate regional flood trends, we use a non-stationary regional flood frequency approach consisting of a regional Gumbel distribution, whose median and growth factor can vary in time with different strengths for different catchment sizes. A Bayesian Markov chain Monte Carlo (MCMC) approach is used for parameter estimation. We quantify regional trends (and the related sample uncertainties), for floods of selected return periods and for selected catchment areas, across Europe and for three regions where coherent flood trends have been identified in previous studies. Results show that in northwestern Europe the trends in flood magnitude are generally positive. In small catchments (up to 100 km2), the 100-year flood increases more than the median flood, while the opposite is observed in medium and large catchments, where even some negative trends appear, especially in northwestern France. In southern Europe flood trends are generally negative. The 100-year flood decreases less than the median flood, and, in the small catchments, the median flood decreases less compared to the large catchments. In eastern Europe the regional trends are negative and do not depend on the return period, but catchment area plays a substantial role: the larger the catchment, the more negative the trend

    Modeling the interaction between flooding events and economic growth

    Get PDF
    Recently socio-hydrology models have been proposed to analyze the interplay of community risk-coping culture, flooding damage and economic growth. These models descriptively explain the feedbacks between socio-economic development and natural disasters such as floods. Complementary to these descriptive models, we develop a dynamic optimization model, where the inter-temporal decision of an economic agent interacts with the hydrological system. We assume a standard macro-economic growth model where agents derive utility from consumption and output depends on physical capital that can be accumulated through investment. To this framework we add the occurrence of flooding events which will destroy part of the capital. We identify two specific periodic long term solutions and denote them rich and poor economies. Whereas rich economies can afford to invest in flood defense and therefore avoid flood damage and develop high living standards, poor economies prefer consumption instead of investing in flood defense capital and end up facing flood damages every time the water level rises like e.g. the Mekong delta. Nevertheless, they manage to sustain at least a low level of physical capital. We identify optimal investment strategies and compare simulations with more frequent, more intense and stochastic high water level events

    Development and Validation of the False Disorder Score: The Focal Scale of the Inventory of Problems

    Get PDF
    This article introduces the Inventory of Problems (IOP)-a new, computerized, 181-item tool designed to discriminate bona fide from feigned mental illness and cognitive impairment-and presents the development and validation of its focal, feigning scale, the False Disorder Score (IOP-FDS). The initial sample included (a) 211 patients and 64 offenders who took the IOP under standard conditions, and (b) 210 community volunteers and 64 offenders who feigned mental illness. We split this sample into three subsamples. The first

    Invigorating hydrological research through journal publications

    Get PDF
    Over the past five years, the editors of a number of journals in the discipline of hydrology have met informally to discuss challenges and concerns in relation to the rapidly changing publishing landscape. Two of the previous meetings, in Götenborg in July 2013 and in Prague in June 2015, were followed by joint editorials (Blöschl et al. 2014; Koutsoyiannis et al. 2016) published in all participating journals. A meeting was convened in Vienna in April 2017 [during the General Assembly of the European Geosciences Union (EGU)] that was attended by 21 editors representing 14 journals. Even though the journals are published in very different settings, the editors found common cause in a vision of the editor’s role beyond just that of gatekeeper ensuring high-quality publications, to also being critical facilitators of scientific advances. In that enabling spirit, we as editors acknowledge the need to anticipate and adapt to the changing publishing landscape. This editorial communicates our views on the implications for authors, readers, reviewers, institutional assessors, and the community of editors, as discussed during the meeting and subsequently
    • …
    corecore