7 research outputs found

    Positronium reflection and positronium beams

    Get PDF
    Specular reflection of positronium, Ps was observed and that there is adequate intensity at higher energies to make further study worthwhile was established. The scattering appears to be restricted to the outermost surface with a mean free path of (0.75 + or - 0.15)A for Ps in LiF(100). With a greater intensity Ps beam one should see higher order diffraction beams as the result of the periodicity of the surface. Ps diffraction thus offers the possibility of being a novel and valuable probe to study the outermost surface and to study adsorbants on it. Two methods for producing Ps beams are described

    Correlating Size and Composition-Dependent Effects with Magnetic, Mössbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles

    No full text
    The magnetic spinel ferrites, MFe<sub>2</sub>O<sub>4</sub> (wherein “M” = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different “M”s can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with M = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic pair distribution function analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues

    Representative Conducting Oxides

    No full text
    corecore