22 research outputs found

    Port-access coronary artery bypass grafting: A proposed surgical method

    Get PDF
    AbstractMinimally invasive surgical methods have been developed to provide patients the benefits of open operations with decreased pain and suffering. We have developed a system that allows the performance of cardiopulmonary bypass and myocardial protection with cardioplegic arrest without sternotomy or thoracotomy. In a canine model, we successfully used this system to anastomose the internal thoracic artery to the left anterior descending coronary artery in nine of 10 animals. The left internal thoracic artery was dissected from the chest wall, and the pericardium was opened with the use of thoracoscopic techniques and single lung ventilation. The heart was arrested with a cold blood cardioplegic solution delivered through the central lumen of a balloon occlusion catheter (Endoaortic Clamp; Heartport, Inc., Redwood City, Calif.) in the ascending aorta, and cardiopulmonary bypass was maintained with femorofemoral bypass. An operating microscope modified to allow introduction of the 3.5× magnification objective into the chest was positioned through a 10 mm port over the site of the anastomosis. The anastomosis was performed with modified surgical instruments introduced through additional 5 mm ports. In the cadaver model (n = 7) the internal thoracic artery was harvested and the pericardium opened by means of similar techniques. A precise arteriotomy was made with microvascular thoracoscopic instruments under the modified microscope on four cadavers. In three other cadavers we assessed the exposure provided by a small anterior incision (4 to 6 cm) over the fourth intercostal space. This anterior port can assist in dissection of the distal internal thoracic artery and provides direct access to the left anterior descending, circumflex, and posterior descending arteries. We have demonstrated the potential feasibility of grafting the internal thoracic artery to coronary arteries with the heart arrested and protected, without a major thoracotomy or sternotomy. (J THORAC CARDIOVASC SURG 1996;111:567-73

    Lymphocyte Cc Chemokine Receptor 9 and Epithelial Thymus-Expressed Chemokine (Teck) Expression Distinguish the Small Intestinal Immune Compartment: Epithelial Expression of Tissue-Specific Chemokines as an Organizing Principle in Regional Immunity

    Get PDF
    The immune system has evolved specialized cellular and molecular mechanisms for targeting and regulating immune responses at epithelial surfaces. Here we show that small intestinal intraepithelial lymphocytes and lamina propria lymphocytes migrate to thymus-expressed chemokine (TECK). This attraction is mediated by CC chemokine receptor (CCR)9, a chemoattractant receptor expressed at high levels by essentially all CD4+ and CD8+ T lymphocytes in the small intestine. Only a small subset of lymphocytes in the colon are CCR9+, and lymphocytes from other tissues including tonsils, lung, inflamed liver, normal or inflamed skin, inflamed synovium and synovial fluid, breast milk, and seminal fluid are universally CCR9−. TECK expression is also restricted to the small intestine: immunohistochemistry reveals that intense anti-TECK reactivity characterizes crypt epithelium in the jejunum and ileum, but not in other epithelia of the digestive tract (including stomach and colon), skin, lung, or salivary gland. These results imply a restricted role for lymphocyte CCR9 and its ligand TECK in the small intestine, and provide the first evidence for distinctive mechanisms of lymphocyte recruitment that may permit functional specialization of immune responses in different segments of the gastrointestinal tract. Selective expression of chemokines by differentiated epithelium may represent an important mechanism for targeting and specialization of immune responses

    Race, Ethnicity and Ancestry in Unrelated Transplant Matching for the National Marrow Donor Program: A Comparison of Multiple Forms of Self-Identification with Genetics.

    No full text
    We conducted a nationwide study comparing self-identification to genetic ancestry classifications in a large cohort (n = 1752) from the National Marrow Donor Program. We sought to determine how various measures of self-identification intersect with genetic ancestry, with the aim of improving matching algorithms for unrelated bone marrow transplant. Multiple dimensions of self-identification, including race/ethnicity and geographic ancestry were compared to classifications based on ancestry informative markers (AIMs), and the human leukocyte antigen (HLA) genes, which are required for transplant matching. Nearly 20% of responses were inconsistent between reporting race/ethnicity versus geographic ancestry. Despite strong concordance between AIMs and HLA, no measure of self-identification shows complete correspondence with genetic ancestry. In certain cases geographic ancestry reporting matches genetic ancestry not reflected in race/ethnicity identification, but in other cases geographic ancestries show little correspondence to genetic measures, with important differences by gender. However, when respondents assign ancestry to grandparents, we observe sub-groups of individuals with well- defined genetic ancestries, including important differences in HLA frequencies, with implications for transplant matching. While we advocate for tailored questioning to improve accuracy of ancestry ascertainment, collection of donor grandparents' information will improve the chances of finding matches for many patients, particularly for mixed-ancestry individuals

    Mean genetic ancestry proportions determined via ancestry informative markers and HLA haplotype origin frequencies for subpopulations defined by reported race/ethnicity or geographic ancestry.

    No full text
    <p>* All individuals have two HLA haplotypes. Multi-origin haplotype classification indicates that one of the individual’s haplotypes is closely associated with one continental origin while the other haplotype is associated with a different continental origin.</p><p>Mean genetic ancestry proportions determined via ancestry informative markers and HLA haplotype origin frequencies for subpopulations defined by reported race/ethnicity or geographic ancestry.</p
    corecore