6 research outputs found

    Neuroprotection and antioxidants

    No full text
    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality

    Neuroprotection and antioxidants

    No full text
    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality

    Iron Deposition in the Brain Following the Ischemia in a Rat Model of Ischemic Tolerance

    No full text
    Preconditioning of the brain by short-term ischemia increases brain tolerance to the subsequent severer ischemia. In this study, we investigated iron deposition in the cerebral cortex and the ischemic tolerance in a rat model of cerebral ischemia. Forebrain ischemia was induced by four-vessel occlusion for 5 min as ischemic preconditioning. Two days after preconditioning or after the sham-operation, the second ischemia was induced for 20 min. Changes in the cerebral cortex were examined after 1 to 8 weeks of recirculation following 20 min ischemia with or without preconditioning using the iron histochemistry. Granular deposits of the iron were found in the cytoplasm of the pyramidal cells in the layers III and V of the frontal cortex after 1 week of recirculation. When the rats were exposed to 5 min ischemia 2 days before 20 min lasting ischemia, the deposition of iron in the cytoplasm of the pyramidal cells in layers III and V of the frontal cortex was significantly lower during all periods of reperfusion. Preconditioning 5 min ischemia followed by 2 days of reperfusion before 20 min ischemia also prevented degeneration of the pyramidal neurons in layers III and V of the frontal cortex
    corecore