245 research outputs found

    Hanford Low-Activity Waste Vitrification: A Review

    Get PDF
    This Paper Summarizes the Vast Body of Literature (Over 200 Documents) Related to Vitrification of the Low-Activity Waste (LAW) Fraction of the Hanford Tank Wastes. Details Are Provided on the Origins of the Hanford Tank Wastes that Resulted from Nuclear Operations Conducted between 1944 and 1989 to Support Nuclear Weapons Production. Waste Treatment Processes Are Described, Including the Baseline Process to Separate the Tank Waste into LAW and High-Level Waste Fractions, and the LAW Vitrification Facility Being Started at Hanford. Significant Focus is Placed on the Glass Composition Development and the Property-Composition Relationships for Hanford LAW Glasses. Glass Disposal Plans and Criteria for Minimizing Long-Term Environmental Impacts Are Discussed Along with Research Perspectives

    Micron-sized Spinel Crystals In High Level Waste Glass Compositions: Determination Of Crystal Size And Crystal Fraction

    Get PDF
    The compositions utilized for immobilization of high-level nuclear wastes (HLW) are controlled using glass property models to avoid the deleterious effects of crystallization in the high-level waste (HLW) vitrification melters. The type and size of the crystals that precipitate during melter operations (typically at 1150 °C) and idling (∼1000 °C) are significantly impacted by glass composition and thermal history. This study was conducted to measure the impact of melt composition and heat treatment temperature on crystal size and fraction. A matrix of 31 multi-component glasses canvasing the expected Hanford HLW compositional space was developed and the glasses fabricated, and heat treated at 850, 900, and 950 °C. The crystal amounts, as determined by X-ray diffraction, varied from 0.2 to 41.0 wt.%. Spinel concentrations ranged from 0.0 to 13.8 wt.%. One glass of the matrix did not precipitate spinel and contained 0.2 wt.% RuO2, which was assumed to be undissolved from the melting process. All compositions contained crystals in the as-quenched glass. All of the spinel-based crystals present in the glasses were less than 10 μm in diameter, as determined by scanning electron microscopy with image analysis. Composition and temperature dependent models were generated using the resulting data and the best model fit was obtained by only considering spinel concentrations (R2 = 0.87). Two glasses were unable to be characterized because of an inability to process the glass under the conditions of this study. Those glasses were utilized to give insight into a potential multi-component constraint to aid in future statistical composition designs

    Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Get PDF
    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184

    Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Get PDF
    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization

    Alternative Waste Forms for Electro-Chemical Salt Waste

    Get PDF
    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form

    Development of Crystal-Tolerant High-Level Waste Glasses

    Get PDF
    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ≤10-μm crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation of the crystal-tolerant HLW glasses for higher waste loading. A physical modeling effort revealed that the Stokes and Richardson-Zaki equations can be used to adequately predict the accumulation rate of spinel crystals of different sizes and concentrations in the glass discharge riser of HLW melters. The determined shape factor for the glass beads was only 0.73% lower than the theoretical shape factor for a perfect sphere. The shape factor for the spinel crystals matched the theoretically predicted value to within 10% and was smaller than that of the beads, given the larger drag force caused by the larger surface area-to-volume ratio of the octahedral crystals. In the hindered settling experiments, both the glass bead and spinel suspensions were found to follow the predictions of the Richardson-Zaki equation with the exponent n = 3.6 and 2.9 for glass beads and spinel crystals, respectively

    Glass Formulation Development for INEEL Sodium-Bearing Waste

    Get PDF
    Studies were performed to develop and test a glass formulation for immobilization of sodium-bearing waste (SBW). SBW is a high soda, acid high activity waste stored at the INEEL in 10 underground tanks. It was determined in previous studies that SBW?s sulfur content dictates the its loading in borosilicate glasses to be melted by currently assumed processes. If the sulfur content (which is ~4.5 mass% SO3 on a non-volatile oxide basis in SBW) of the melter feed is too high then a molten alkali sulfate containing salt phase accumulates on the melt surface. The avoidance of salt accumulation during the melter process and the maximization of sulfur incorporation into the glass melt were the main focus of this development work. A glass was developed for 20 mass% SBW (on a non-volatile oxide basis), which contained 0.91 mass% SO3, that met all the processing and product quality constraint determined for SBW vitrification at a planned INEEL treatment plant?SBW-22-20. This report summarizes the formulation efforts and presents the data developed on a series of glasses with simulated SBW. Summar

    Self-healing capacity of nuclear glass observed by NMR spectroscopy

    Get PDF
    Safe management of high level nuclear waste is a worldwide significant issue for which vitrification has been selected by many countries. There exists a crucial need for improving our understanding of the ageing of the glass under irradiation. While external irradiation by ions provides a rapid simulation of damage induced by alpha decays, short lived actinide doping is more representative of the reality. Here, we report radiological NMR experiments to compare the damage in International Simplified Glass (ISG) when irradiated by these two methods. In the 0.1 mole percent 244Cm doped glass, accumulation of high alpha decay only shows small modifications of the local structure, in sharp contrast to heavy ion irradiation. These results reveal the ability of the alpha particle to partially repair the damage generated by the heavy recoil nuclei highlighting the radiation resistance of nuclear glass and the difficulty to accurately simulate its behaviour by single ion beam irradiations
    • …
    corecore