18 research outputs found

    The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    Get PDF
    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants

    Surface conditioning with <em>Escherichia coli</em> cell wall components can reduce biofilm formation by decreasing initial adhesion

    Get PDF
    Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that <em>E. coli</em> cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on <em>E. coli</em> biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time

    Population biology of Trichomycterus sp. (Siluriformes, Trichomycteridae) in Passa Cinco stream, Corumbataí River sub-basin, São Paulo State, southeastern Brazil

    No full text
    The aim of this work was to characterise the population of Trichomycterus sp. in Passa Cinco stream, regarding length structure, sex ratio, diet and reproductive aspects, in accordance with drought and rainy season periods and longitudinal gradient, as well as to analyse its corporal condition in a temporal dimension. Six samplings were accomplished with the use of electric fishing equipment in three different sites in Passa Cinco stream, contemplating sites of order two, three and four, during the months of May, July, September and November of 2005; and January and March of 2006. Three hundred and forty one individuals were captured, composed of 203 males, 99 females and 39 immatures. The smallest captured individual, an immature, presented 28 mm of standard length and the largest, a male, 85 mm. There was not significant variation in repletion degree and accumulated fat in the visceral cavity of the individuals analysed during the considered periods. Eleven different food items were found in the stomach contents. Considering the whole sampling period, immature Diptera was a preferential item and other items were found as occasionally ingested. Spearman and Friedman tests did not find significant differences in the diet of Trichomycterus sp. in the periods and sampling sites, respectively. The average of absolute fecundity was of 73 oocytes, and the parceled type of spawning was performed. Both males and females of Trichomycterus sp. presented significant differences in their corporal conditions in the considered periods, and in the rainy season, these fishes were in better condition
    corecore