41,119 research outputs found

    One-dimensional Ising model with long-range and random short-range interactions

    Full text link
    The one-dimensional Ising model in an external magnetic field with uniform long-range interactions and random short-range interactions satisfying bimodal annealed distributions is studied. This generalizes the random model discussed by Paladin et al. (J. Phys. I France 4, 1994, p. 1597). Exact results are obtained for the thermodynamic functions at arbitrary temperatures, and special attention is given to the induced and spontaneous magnetization. At low temperatures the system can exist in a ``ferrimagnetic'' phase with magnetization 0<m<1, in addition to the usual paramagnetic, ferromagnetic and antiferromagnetic phases. For a fixed distribution of the random variables the system presents up to three tricritical points for different intensities of the long-range interactions. Field-temperature diagrams can present up to four critical points.Comment: 11 pages, 19 figures, to be published in Journal of Magnetism and Magnetic Material

    The Eastward Enlargement of the Eurozone: Trade and FDI

    Get PDF
    Trade and FDI, Economic Integration

    Stabilized jellium model and structural relaxation effects on the fragmentation energies of ionized silver clusters

    Full text link
    Using the stabilized jellium model in two schemes of `relaxed' and `rigid', we have calculated the dissociation energies and the fission barrier heights for the binary fragmentations of singly-ionized and doubly-ionized Ag clusters. In the calculations, we have assumed spherical geometries for the clusters. Comparison of the fragmentation energies in the two schemes show differences which are significant in some cases. This result reveals the advantages of the relaxed SJM over the rigid SJM in dynamical processes such as fragmentation. Comparing the relaxed SJM results and axperimental data on fragmentation energies, it is possible to predict the sizes of the clusters just before their fragmentations.Comment: 9 pages, 12 JPG figure

    Nonuniversality of weak synchronization in chaotic systems

    Full text link
    We show that the separate properties of weak synchronization (WS) and strong synchronization (SS), reported recently by Pyragas [K. Pyragas, Phys. Rev. E, 54, R4508 (1996)], in unidirectionally coupled chaotic systems, are not generally distinct properties of such systems. In particular, we find analytically for the tent map and numerically for some parameters of the circle map that the transition to WS and SS coincide.Comment: 3 pages (Revtex) and 3 figures (postscript) To appear in Phys. Rev. E (Rapid Communications

    Protecting clean critical points by local disorder correlations

    Full text link
    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics.Comment: 5 pages, 3 figures; published versio

    Herschel-ATLAS: Dust temperature and redshift distribution of SPIRE and PACS detected sources using submillimetre colours

    Get PDF
    We present colour–colour diagrams of detected sources in the Herschel-ATLAS science demonstration field from 100 to 500 μm using both PACS and SPIRE. We fit isothermal modified black bodies to the spectral energy distribution (SED) to extract the dust temperature of sources with counterparts in Galaxy And Mass Assembly (GAMA) or SDSS surveys with either a spectroscopic or a photometric redshift. For a subsample of 330 sources detected in at least three FIR bands with a significance greater than 3σ, we find an average dust temperature of (28±8) K. For sources with no known redshift, we populate the colour–colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters, and compare to colours of observed sources to establish the redshift distribution of this sample. For another subsample of 1686 sources with fluxes above 35 mJy at 350 μm and detected at 250 and 500 μm with a significance greater than 3σ, we find an average redshift of 2.2 ± 0.6
    corecore