97 research outputs found

    Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum

    Get PDF
    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks’ C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway

    Outer membrane protein a conservation among Orientia tsutsugamushi isolates suggests its potential as a protective antigen and diagnostic target

    Get PDF
    Scrub typhus threatens one billion people in the Asia-Pacific area and cases have emerged outside this region. It is caused by infection with any of the multitude of strains of the bacterium; Orientia tsutsugamushi; . A vaccine that affords heterologous protection and a commercially-available molecular diagnostic assay are lacking. Herein, we determined that the nucleotide and translated amino acid sequences of outer membrane protein A (OmpA) are highly conserved among 51; O. tsutsugamushi; isolates. Molecular modeling revealed the predicted tertiary structure of; O. tsutsugamushi; OmpA to be very similar to that of the phylogenetically-related pathogen,; Anaplasma phagocytophilum; , including the location of a helix that contains residues functionally essential for; A. phagocytophilum; infection. PCR primers were developed that amplified; ompA; DNA from all; O. tsutsugamushi; strains, but not from negative control bacteria. Using these primers in quantitative PCR enabled sensitive detection and quantitation of; O. tsutsugamushi ompA; DNA from organs and blood of mice that had been experimentally infected with the Karp or Gilliam strains. The high degree of OmpA conservation among; O. tsutsugamushi; strains evidences its potential to serve as a molecular diagnostic target and justifies its consideration as a candidate for developing a broadly-protective scrub typhus vaccine

    The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA.

    Get PDF
    The proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa is an extremely hydrophobic protein of 81 amino acid residues, which is imported into mitochondria as a precursor of mol. wt. 15 000. The primary structure of the imported form has now been determined by isolating and analyzing cDNA clones of the preproteolipid mRNA. An initial cDNA clone was identified by hybridizing total polyadenylated RNA to pooled cDNA recombinant plasmids from an ordered clone bank and subsequent cell-free translation of hybridization-selected mRNA. Further preproteolipid clones were identified at a frequency of 0.2% by colony filter hybridization. One isolated cDNA represented the major part of the preproteolipid mRNA. The nucleotide sequence showed 243 bases corresponding to the mature proteolipid and, in addition, 178 bases coding for an amino-terminal presequence . Non-coding sequences of 48 bases at the 5' end and of 358 bases at the 3' end plus a poly(A) tail were determined. The long presequence of 66 amino acids is very polar, in contrast to the lipophilic mature proteolipid, and includes 12 basic and no acidic side chains. It is suggested that the presequence is specifically designed to solubilize the proteolipid for post-translational import into the mitochondria

    NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri.

    No full text
    The regulatory element NosR was identified within the nos region of the denitrification gene cluster of Pseudomonas stutzeri ZoBell (ATCC 14405) and characterized. It is essential for expression of the N2O reductase encoded by nosZ immediately downstream of nosR. The nosR region was initially identified by Tn5 mutagenesis (W. G. Zumft, K. Döhler, and H. Körner, J. Bacteriol. 163:918-924, 1985). It consists of a single open reading frame of 2,172 nucleotides and has the coding capacity for an 81.9-kDa protein. The codon usage for nosR, with its high G + C content of 62.4 mol% and a preference for G or C at the third position, is characteristic for a Pseudomonas gene. Hydropathy analysis classified NosR as an integral membrane protein with at least seven membrane-spanning segments. No similarity to known bacterial regulator proteins was found in a data bank search. However, the C terminus of NosR shows sequence similarity to the cysteine clusters of several 2[4Fe-4S] bacterial ferrodoxins. A monocistronic mRNA for nosZ which allowed us to monitor NosR function was identified. Complementation of Nos- mutant MK418 (nosR::Tn5) with the nosR gene supplied in trans restored nosZ transcription and expression of a catalytically active N2O reductase. In addition to evidence of the requirement for NosR, indirect evidence for involvement of the transcriptional regulator Fnr is presented
    corecore