30 research outputs found

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Antibodies against phospholipase C inhibit smooth muscle contraction induced by acetylcholine and histamine

    No full text
    The rationale of this study was to obtain a highly specific inhibitor of phospholipase C by raising rabbit antibodies against the purified bacterial phospholipase C. The antibodies inhibited the enzyme activity in vitro and, as shown by immunofluorescence, cross-reacted with the membrane-bound phospholipase C of isolated guinea-pig smooth muscle cells. Incubation (0–4 h) of guinea-pig taenia coli and ileum with antibodies resulted in a progressive inhibition (up to 85%) of the contractile response evoked by 2 μM acetylcholine or 2 μM histamine but did not inhibit significantly the contraction produced by prostaglandin F2α (0.1 μM). These inhibitory antibodies presumably represent the ‘missing tool’ needed to establish unequivocally if a given agonist acts via stimulation of the membrane-bound phospholipase C, and implicity phosphoinositide hydrolysis
    corecore