3 research outputs found

    Activation of αSMA expressing perivascular cells during reactionary dentinogenesis

    No full text
    Aim: To examine the contribution of perivascular cells expressing αSMA to reactionary dentinogenesis. Methodology: An inducible, Cre-loxP in vivo fate- mapping approach was used to examine the contribution of the descendants of cells expressing the αSMA-CreERT2 transgene to reactionary dentinogenesis in mice molars. Reactionary dentinogenesis was induced by experimental mild injury to dentine without pulp exposure. The Student's t test was used to determine statistical significance at *P ≤ 0.05. Results: The lineage tracing experiments revealed that mild injury to dentine first led to activation of αSMA-tdTomato+ cells in the entire pulp chamber. The percentage of areas occupied by αSMA-tdTomato+ in injured (7.5 ± 0.7%) teeth were significantly higher than in teeth without injury (2 ± 0.5%). After their activation, αSMA- tdTomato+ cells migrated towards the site of injury, gave rise to pulp cells and a few odontoblasts that became integrated into the existing odontoblast layer expressing Col2.3-GFP and Dspp. Conclusion: Mild insult to dentine activated perivascular αSMA-tdTomato+ cells giving rise to pulp cells as well as a few odontoblasts that were integrated into the pre-existing odontoblast layer

    Expression of BSP-GFPtpz Transgene during Osteogenesis and Reparative Dentinogenesis

    No full text
    Bone sialoprotein (BSP) is a member of the SIBLING family with essential roles in skeletogenesis. In the developing teeth, although the expression and function of BSP in the formation of acellular cementum and periodontal attachment are well documented, there are uncertainties regarding the expression and function of BSP by odontoblasts and dentin. Reporter mice are valuable animal models for biological research, providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. In the present study, we examined the expression of a BSP-GFPtpz reporter mouse line during odontoblast differentiation, reparative dentinogenesis, and bone. In the developing teeth, BSP-GFPtpz was expressed at high levels in cementoblasts but not in odontoblasts or dentin. In bones, the transgene was highly expressed in osteoblasts at an early stage of differentiation. Interestingly, despite its lack of expression in odontoblasts and dental pulp during tooth development, the BSP-GFPtpz transgene was detected during in vitro mineralization of primary pulp cultures and during reparative dentinogenesis following pulp exposures. Importantly, under these experimental contexts, the expression of BSP-GFPtpz was still exclusive to DSPP-Cerulean, an odontoblast-specific reporter gene. This suggests that the combinatorial use of BSP-GFPtpz and DSPP-Cerulean can be a valuable experimental tool to distinguish osteogenic from dentinogenic cells, thereby providing an avenue to investigate mechanisms that distinctly regulate the lineage progression of progenitors into odontoblasts versus osteoblasts
    corecore