13 research outputs found

    Scaling of swimming performance in baleen whales

    Get PDF
    The scale dependence of locomotor factors has long been studied in comparative biomechanics, but remains poorly understood for animals at the upper extremes of body size. Rorqual baleen whales include the largest animals, but we lack basic kinematic data about their movements and behavior below the ocean surface. Here, we combined morphometrics from aerial drone photogrammetry, whale-borne inertial sensing tag data and hydrodynamic modeling to study the locomotion of five rorqual species. We quantified changes in tail oscillatory frequency and cruising speed for individual whales spanning a threefold variation in body length, corresponding to an order of magnitude variation in estimated body mass. Our results showed that oscillatory frequency decreases with body length (proportional to length(-0.5)(3)) while cruising speed remains roughly invariant (proportional to length(0.08)) at 2 m s(-1). We compared these measured results for oscillatory frequency against simplified models of an oscillating cantilever beam (proportional to length(-1)) and an optimized oscillating Strouhal vortex generator (proportional to length(-1)). The difference between our length-scaling exponent and the simplified models suggests that animals are often swimming non-optimally in order to feed or perform other routine behaviors. Cruising speed aligned more closely with an estimate of the optimal speed required to minimize the energetic cost of swimming (proportional to length(-1)). Our results are among the first to elucidate the relationships between both oscillatory frequency and cruising speed and body size for free-swimming animals at the largest scale

    Scaling of maneuvering performance in baleen whales: larger whales outperform expectations

    Get PDF
    Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.We thank the crews of many research vessels including the R/V John Martin, R/V Fluke, ARSV Laurence M. Gould, R/V Sanna, M/V Antonie, M/V Northern Song, the Cascadia Research Collective and the Shallow Marine Surveys Group; in particular, we thank John Douglas, Andrew Bell, Shaun Tomlinson, Steve Cartwright, Tony D'Aoust, Dennis Rogers, Kelly Newton, Heather Riley, Gina Rousa and Mark Rousa. We also thank Brandon L. Southall, Alison K. Stimpert and Stacy L. DeRuiter for their role in collecting data as part of the SOCAL-BRS project. We thank Matt S. Savoca, Julian Dale and Danuta M. Wisniewska for assistance with data collection. Finally, we thank John H. Kennedy, Michael A. Thompson and the NSF Office of Polar Programs.Ye
    corecore