1,174 research outputs found

    The calorimetry at the future e+ e- linear collider

    Full text link
    The physics programme for a coming electron linear collider is dominated by events with final states containing many jets. We develop in this paper the opinion that the best approach is to optimise the independent measurement of the tracks in the tracker, the photons in the electromagnetic calorimeter and the neutral hadrons in the camorimetry, together with a good lepton identification. This can be achieved with a high granularity calorimetry providing particle separation, through an efficient energy flow algorithm.Comment: 7 pages, 6 Postscript figures, to appear in the Proceedings of the APS / DPF / DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass, Colorado, 30 Jun - 21 Jul 200

    Modélisation des effets mécaniques des transformations de phases pour le calcul de structures

    No full text
    A set of constitutive equations are proposed to take into account the predominant mechanical effects due to solid state phase transformations in steels under multi-axial loading. The aim of this work is to formalize, for structural computations (heat treatment and welding), the main experimental and theoretical results available in the literature. The interna1 stresses generated by the transformation induced flow are represented by internal variables in the framework of the thermodynamics of the irreversible processes. We propose a mathematical formulation of the strain-hardening effects on the transformation induced plastic flow and of the transformation induced hardening on the "classical" plasticity. The constitutive equations have been implemented into the F.E. code ZeBuLoN and we briefly present a thermo-metallurgical and mechanical simulation with hardening couplings

    Experimental Study of the Transformation-Induced Plasticity in a Cr-Ni-Mo-Al-Ti Steel

    No full text
    This paper shows experimental results concerning the martensitic transformation and the transformation-induced plasticity under multiaxial loading. The material investigated is a Cr-Ni-Mo-Al-Ti steel, which is submitted to a γ → α' martensitic phase transformation under an applied stress. The specimens are thin tubes loaded in tension-torsion. The tests were specially designed to provide information on classical questions related with transformation plasticity and the interaction between applied stresses and phase transformations in the case of tension-shear loadings : effect of the applied stresses on Ms temperature, definition of the transformation-induced plasticity (flow intensity, direction in stress space, evolution vs phase change), eventual presence of internal stresses. Some of the answers given by the present study confirm the usual assumptions, but the analysis of the tests also reveals new effects not predicted by the classical theories proposed to quantify the transformation induced plasticity phenomenon

    Report on 1 GeV electron spectrometer

    Get PDF

    Contribution of the d-Serine-Dependent Pathway to the Cellular Mechanisms Underlying Cognitive Aging

    Get PDF
    An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors (NMDA-R) by its agonist d-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous d-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of d-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of d-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the d-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly

    Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions

    Full text link
    Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons to enable measurements of its suppressed decays. Results of a detailed study of the determination of the muon Yukawa coupling at 3 TeV, based on full detector simulation and event reconstruction, are presented. The muon Yukawa coupling can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab. The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy

    The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120

    Get PDF
    The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9–14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234. Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein–protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription–quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein–protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes
    corecore