1,815 research outputs found

    The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production

    Get PDF
    Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis

    Calcium Channel CaV2.3 Subunits Regulate Hepatic Glucose Production by Modulating Leptin-Induced Excitation of Arcuate Pro-opiomelanocortin Neurons.

    Get PDF
    Leptin acts on hypothalamic pro-opiomelanocortin (POMC) neurons to regulate glucose homeostasis, but the precise mechanisms remain unclear. Here, we demonstrate that leptin-induced depolarization of POMC neurons is associated with the augmentation of a voltage-gated calcium (CaV) conductance with the properties of the "R-type" channel. Knockdown of the pore-forming subunit of the R-type (CaV2.3 or Cacna1e) conductance in hypothalamic POMC neurons prevented sustained leptin-induced depolarization. In vivo POMC-specific Cacna1e knockdown increased hepatic glucose production and insulin resistance, while body weight, feeding, or leptin-induced suppression of food intake were not changed. These findings link Cacna1e function to leptin-mediated POMC neuron excitability and glucose homeostasis and may provide a target for the treatment of diabetes

    A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control

    Full text link
    Different methodologies for fault diagnosis in multivariate quality control have been proposed in recent years. These methods work in the space of the original measured variables and have performed reasonably well when there is a reduced number of mildly correlated quality and/or process variables with a well-conditioned covariance matrix. These approaches have been introduced by emphasizing their positive or negative virtues, generally on an individual basis, so it is not clear for the practitioner the best method to be used. This paper provides a comprehensive study of the performance of diverse methodological approaches when tested on a large number of distinct simulated scenarios. Our primary aim is to highlight key weaknesses and strengths in these methods as well as clarifying their relationships and the requirements for their implementation in practice.Vidal Puig, S.; Ferrer, A. (2014). A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control. Communications in Statistics - Simulation and Computation. 43(5):986-1005. doi:10.1080/03610918.2012.720745S9861005435Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003Doganaksoy, N., Faltin, F. W., & Tucker, W. T. (1991). Identification of out of control quality characteristics in a multivariate manufacturing environment. Communications in Statistics - Theory and Methods, 20(9), 2775-2790. doi:10.1080/03610929108830667Fuchs, C., & Benjamini, Y. (1994). Multivariate Profile Charts for Statistical Process Control. Technometrics, 36(2), 182-195. doi:10.1080/00401706.1994.10485765Hawkins, D. M. (1991). Multivariate Quality Control Based on Regression-Adiusted Variables. Technometrics, 33(1), 61-75. doi:10.1080/00401706.1991.10484770Editorial Board. (2007). Computational Statistics & Data Analysis, 51(8), iii-v. doi:10.1016/s0167-9473(07)00125-9Hayter, A. J., & Tsui, K.-L. (1994). Identification and Quantification in Multivariate Quality Control Problems. Journal of Quality Technology, 26(3), 197-208. doi:10.1080/00224065.1994.11979526HOCHBERG, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802. doi:10.1093/biomet/75.4.800HOMMEL, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75(2), 383-386. doi:10.1093/biomet/75.2.383Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699Li, J., Jin, J., & Shi, J. (2008). Causation-BasedT2Decomposition for Multivariate Process Monitoring and Diagnosis. Journal of Quality Technology, 40(1), 46-58. doi:10.1080/00224065.2008.11917712Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition ofT2 for Multivariate Control Chart Interpretation. Journal of Quality Technology, 27(2), 99-108. doi:10.1080/00224065.1995.11979573Mason, R. L., Tracy, N. D., & Young, J. C. (1997). A Practical Approach for Interpreting Multivariate T2 Control Chart Signals. Journal of Quality Technology, 29(4), 396-406. doi:10.1080/00224065.1997.11979791Murphy, B. J. (1987). Selecting Out of Control Variables With the T 2 Multivariate Quality Control Procedure. The Statistician, 36(5), 571. doi:10.2307/2348668Rencher, A. C. (1993). The Contribution of Individual Variables to Hotelling’s T 2 , Wilks’ Λ, and R 2. Biometrics, 49(2), 479. doi:10.2307/2532560Roy, J. (1958). Step-Down Procedure in Multivariate Analysis. The Annals of Mathematical Statistics, 29(4), 1177-1187. doi:10.1214/aoms/1177706449Runger, G. C., Alt, F. B., & Montgomery, D. C. (1996). Contributors to a multivariate statistical process control chart signal. Communications in Statistics - Theory and Methods, 25(10), 2203-2213. doi:10.1080/03610929608831832Sankoh, A. J., Huque, M. F., & Dubey, S. D. (1997). Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Statistics in Medicine, 16(22), 2529-2542. doi:10.1002/(sici)1097-0258(19971130)16:223.0.co;2-jTukey, J. W., Ciminera, J. L., & Heyse, J. F. (1985). Testing the Statistical Certainty of a Response to Increasing Doses of a Drug. Biometrics, 41(1), 295. doi:10.2307/253066

    Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. Conclusion: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180)

    PPARÎł Variant Influences Angiographic Outcome and 10-Year Cardiovascular Risk in Male Symptomatic Coronary Artery Disease Patients

    Get PDF
    OBJECTIVE: Activation of peroxisome proliferator-activated receptor (PPAR)-gamma signaling influences metabolic profiles and the propensity toward inflammation. Small-molecule stimulation of PPARgamma is investigated for secondary prevention of cardiovascular disease. The common PPARgamma Pro12Ala variant has functional and prognostic consequences. A protective effect of the 12Ala-allele carriership on diabetes and myocardial infarction in healthy populations has been suggested. The relevance of this pathway also needs exploration in patients with manifest vascular disease. We investigated the effects of carriership of the Pro12Ala variant on angiographic and cardiovascular event outcomes in male patients with symptomatic coronary artery disease (CAD). RESEARCH DESIGN AND METHODS: The Regression Growth Evaluation Statin Study (REGRESS) cohort was genotyped for the Pro12Ala variant (rs1801282). Ten-year follow-up was derived from nation-wide registries, and risks were estimated using proportional hazards. Quantitative coronary angiography measurements were obtained and relations with genotype estimated using a generalized linear model. RESULTS: Genotypes ascertained (n = 679) comprised 540 (80%) Pro/Pro, 126 (19%) Pro/Ala, and 13 (2%) Ala/Ala subjects. The 12Ala allele was associated with less extensive focal (P = 0.001) and diffuse (P = 0.002) atherosclerosis and lower 10-year cardiovascular risk. Hazard ratios were 0.10 (95% CI 0.01-0.70, P = 0.02) for ischemic heart disease and 0.24 (0.08-0.74, P = 0.013) for vascular death, per each added copy of 12Ala, respectively. CONCLUSIONS: Carriers of the 12Ala allele of PPARgamma have less widespread CAD and are considerably protected against 10-year (cardio)vascular morbidity and mortality. These long-term findings in patients with manifest CAD support an important role of PPARgamma in determining vascular ris

    Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma

    Get PDF
    Background and Aims: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. Approach and Results: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. Conclusions: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC

    Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption

    Get PDF
    Background: Diet is a major contributor to metabolic disease risk, but there is controversy as to whether increased incidences of diseases such as non-alcoholic fatty liver disease arise from consumption of saturated fats or free sugars. Here, we investigate whether a sub-set of triacylglycerols (TAGs) were associated with hepatic steatosis and whether they arise from de novo lipogenesis (DNL) from the consumption of carbohydrates. Results: We conduct direct infusion mass spectrometry of lipids in plasma to study the association between specific TAGs and hepatic steatosis assessed by ultrasound and fatty liver index in volunteers from the UK-based Fenland Study and evaluate clustering of TAGs in the National Survey of Health and Development UK cohort. We find that TAGs containing saturated and monounsaturated fatty acids with 16-18 carbons are specifically associated with hepatic steatosis. These TAGs are additionally associated with higher consumption of carbohydrate and saturated fat, hepatic steatosis, and variations in the gene for protein phosphatase 1, regulatory subunit 3b (PPP1R3B), which in part regulates glycogen synthesis. DNL is measured in hyperphagic ob/ob mice, mice on a western diet (high in fat and free sugar) and in healthy humans using stable isotope techniques following high carbohydrate meals, demonstrating the rate of DNL correlates with increased synthesis of this cluster of TAGs. Furthermore, these TAGs are increased in plasma from patients with biopsy-confirmed steatosis. Conclusion: A subset of TAGs is associated with hepatic steatosis, even when correcting for common confounding factors. We suggest that hepatic steatosis risk in western populations is in part driven by increased DNL following carbohydrate rich meals in addition to the consumption of saturated fat

    Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function.

    Get PDF
    Adipose tissue dysfunction is an important determinant of obesity-associated, lipid-induced metabolic complications. Ceramides are well-known mediators of lipid-induced insulin resistance in peripheral organs such as muscle. DEGS1 is the desaturase catalyzing the last step in the main ceramide biosynthetic pathway. Functional suppression of DEGS1 activity results in substantial changes in ceramide species likely to affect fundamental biological functions such as oxidative stress, cell survival, and proliferation. Here, we show that degs1 expression is specifically decreased in the adipose tissue of obese patients and murine models of genetic and nutritional obesity. Moreover, loss-of-function experiments using pharmacological or genetic ablation of DEGS1 in preadipocytes prevented adipogenesis and decreased lipid accumulation. This was associated with elevated oxidative stress, cellular death, and blockage of the cell cycle. These effects were coupled with increased dihydroceramide content. Finally, we validated in vivo that pharmacological inhibition of DEGS1 impairs adipocyte differentiation. These data identify DEGS1 as a new potential target to restore adipose tissue function and prevent obesity-associated metabolic disturbances.This work was funded by Medical Research Council, MDU MRC, FP7- ETHERPATHS and the British Heart Foundation (BHF). We declare no conflict of interest.This is the accepted manuscript. The final version is available from ADA at http://diabetes.diabetesjournals.org/content/early/2014/10/22/db14-0359.abstract
    • 

    corecore