35,870 research outputs found
Cramer-Rao bounds in the estimation of time of arrival in fading channels
This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.Peer ReviewedPostprint (published version
Ground state entanglement in quantum spin chains
A microscopic calculation of ground state entanglement for the XY and
Heisenberg models shows the emergence of universal scaling behavior at quantum
phase transitions. Entanglement is thus controlled by conformal symmetry. Away
from the critical point, entanglement gets saturated by a mass scale. Results
borrowed from conformal field theory imply irreversibility of entanglement loss
along renormalization group trajectories. Entanglement does not saturate in
higher dimensions which appears to limit the success of the density matrix
renormalization group technique. A possible connection between majorization and
renormalization group irreversibility emerges from our numerical analysis.Comment: 26 pages, 16 figures, added references, minor changes. Final versio
Space-Time diversity for NLOS mitigation in TDOA-based positioning systems
This paper studies the potential impact of using space-Time information in the mitigation of the Non-LineOf-Sight condition in mobile subscriber's positioning systems. First of all, this work discusses the positioning problem based on measures of Time Differences Of Arrival departing from a more exact characterization of the signal statistics and including some geometrical restrictions to achieve an improved accurate. Furthermore, a novel approach that integrates signal propagation characteristics to information provided by a suitable timing estimation model based on Cramer Rao Bound for a Rayleigh-fading channel, when antenna arrays are used at the receiver and when a set ofchannel vector estimates are available, has been introduced to study the positive benefits of space-Time diversity. These approaches are evaluated within a realistic simulation scenario.Peer ReviewedPostprint (published version
Optimal distillation of a GHZ state
We present the optimal local protocol to distill a
Greenberger-Horne-Zeilinger (GHZ) state from a single copy of any pure state of
three qubits.Comment: RevTex, 4 pages, 2 figures. Published version, some references adde
S5 0836+710: An FRII jet disrupted by the growth of a helical instability?
The remarkable stability of extragalactic jets is surprising, given the
reasonable possibility of the growth of instabilities. In addition, much work
in the literature has invoked this possibility in order to explain observed jet
structures and obtain information from these structures. For example, it was
recently shown that the observed helical structures in the jet in S5 0836+710
could be associated with helical pressure waves generated by Kelvin-Helmholtz
instability. Our aim is to resolve the arc-second structure of the jet in the
quasar S5 0836+710 and confirm the lack of a hot-spot (reverse jet-shock) found
by present observing arrays, as this lack implies a loss of jet collimation
before interaction with the intergalactic medium. In this work, we use an
observation performed in 2008 using EVN and MERLIN. The combined data reduction
has provided a complete image of the object at arc-second scales. The lack of a
hot-spot in the arc-second radio structure is taken as evidence that the jet
losses its collimation between the VLBI region and the region of interaction
with the ambient medium. This result, together with the previous identification
of the helical structures in the jet with helical pressure waves that grow in
amplitude with distance, allow us to conclude that the jet is probably
disrupted by the growth of Kelvin-Helmholtz instability. This observational
evidence confirms that the physical parameters of jets can be extracted using
the assumption that instability is present in jets and can be the reason for
many observed structures. Interestingly, the observed jet is classified as a
FRII object in terms of its luminosity, but its large-scale morphology does not
correspond to this classification. The implications of this fact are discussed.Comment: Accepted for publication in Astronomy & Astrophysic
Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane
Indexación: Scopus.This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.http://ref.scielo.org/shz7t
Pairing of Cooper Pairs in a Fully Frustrated Josephson Junction Chain
We study a one-dimensional Josephson junction chain embedded in a magnetic
field. We show that when the magnetic flux per elementary loop equals half the
superconducting flux quantum , a local \nbZ_2 symmetry arises.
This symmetry is responsible for a nematic Luttinger liquid state associated to
bound states of Cooper pairs. We analyze the phase diagram and we discuss some
experimental possibilities to observe this exotic phase.Comment: 4 pages, 4 EPS figure
Entanglement renormalization and gauge symmetry
A lattice gauge theory is described by a redundantly large vector space that
is subject to local constraints, and can be regarded as the low energy limit of
an extended lattice model with a local symmetry. We propose a numerical
coarse-graining scheme to produce low energy, effective descriptions of lattice
models with a local symmetry, such that the local symmetry is exactly preserved
during coarse-graining. Our approach results in a variational ansatz for the
ground state(s) and low energy excitations of such models and, by extension, of
lattice gauge theories. This ansatz incorporates the local symmetry in its
structure, and exploits it to obtain a significant reduction of computational
costs. We test the approach in the context of the toric code with a magnetic
field, equivalent to Z2 lattice gauge theory, for lattices with up to 16 x 16
sites (16^2 x 2 = 512 spins) on a torus. We reproduce the well-known ground
state phase diagram of the model, consisting of a deconfined and spin polarized
phases separated by a continuous quantum phase transition, and obtain accurate
estimates of energy gaps, ground state fidelities, Wilson loops, and several
other quantities.Comment: reviewed version as published in PRB; this version includes a new
section about the accuracy of the results several corrections and added
citation
Entanglement in a first order quantum phase transition
The phase diagram of spins 1/2 embedded in a magnetic field mutually
interacting antiferromagnetically is determined. Contrary to the ferromagnetic
case where a second order quantum phase transition occurs, a first order
transition is obtained at zero field. The spectrum is computed for a large
number of spins and allows one to study the ground state entanglement
properties which displays a jump of its concurrence at the critical point.Comment: 4 pages, 3 EPS figure
- …
