1,748 research outputs found
Laplace Approximation for Divisive Gaussian Processes for Nonstationary Regression
The standard Gaussian Process regression (GP) is usually formulated under stationary hypotheses: The noise power is considered constant throughout the input space and the covariance of the prior distribution is typically modeled as depending only on the difference between input samples. These assumptions can be too restrictive and unrealistic for many real-world problems. Although nonstationarity can be achieved using specific covariance functions, they require a prior knowledge of the kind of nonstationarity, not available for most applications. In this paper we propose to use the Laplace approximation to make inference in a divisive GP model to perform nonstationary regression, including heteroscedastic noise cases. The log-concavity of the likelihood ensures a unimodal posterior and makes that the Laplace approximation converges to a unique maximum. The characteristics of the likelihood also allow to obtain accurate posterior approximations when compared to the Expectation Propagation (EP) approximations and the asymptotically exact posterior provided by a Markov Chain Monte Carlo implementation with Elliptical Slice Sampling (ESS), but at a reduced computational load with respect to both, EP and ESS
Is inhibitory control a ‘no-go’ in adolescents with autism spectrum disorder?
BACKGROUND: Autism spectrum disorder (ASD) refers to a range of neurodevelopmental conditions characterized by social communication deficits, repetitive behaviours, and restrictive interests. Impaired inhibition has been suggested to exacerbate the core symptoms of ASD. This is particularly critical during adolescence when social skills are maturing to adult levels. Using magnetoencephalography (MEG), we identified the location and timing pattern of neural activity associated with inhibition in adolescents with autism, compared to typically developing adolescents. METHODS: The MEG data from 15 adolescents with ASD and 15 age-matched controls (13 to 17 years) were collected during a go/no-go task with inverse ratios of go/no-go trials in two conditions: an inhibition condition (1:2) and a baseline condition (2:1). No-go trials from the two conditions were analyzed using beamformer source localizations from 200 ms to 400 ms post-stimulus onset. Significant activations were determined using permutation testing. RESULTS: Adolescents with ASD recruited first the right middle frontal gyrus (200 to 250 ms) followed by the left postcentral gyrus (250 to 300 ms) and finally the left middle frontal and right medial frontal gyri (300 to 400 ms). Typically developing adolescents recruited first the left middle frontal gyrus (200 to 250 ms), followed by the left superior and inferior frontal gyri (250 to 300 ms), then the right middle temporal gyrus (300 to 350 ms), and finally the superior and precentral gyri and right inferior lobule (300 to 400 ms). CONCLUSIONS: Adolescents with ASD showed recruitment limited largely to the frontal cortex unlike typically developing adolescents who recruited parietal and temporal regions as well. These findings support the presence of an atypical, restricted inhibitory network in adolescents with ASD compared to controls
Bone Histomorphometry Revisited
Bone histomorphometry is defined as a quantitative evaluation of bone micro architecture, remodelling and metabolism. Bone metabolic assessment is based on a dynamic process, which provides data on bone matrix formation rate by incorporating a tetracycline compound. In the static evaluation, samples are stained and a semi-automatic technique is applied in order to obtain bone microarchitectural parameters such as trabecular area, perimeter and width. These parameters are in 2D, but they can be extrapolated into 3D, applying a stereological formula. Histomorphometry can be applied to different areas; however, in recent decades it has been a relevant tool in monitoring the effect of drug administration in bone. The main challenge for the future will be the development of noninvasive methods that can give similar information. In the herein review paper we will discuss the general principles and main applications of bone histomorphometry
Impact of HPV infection on the clinical outcome of p-CAIR trial in head and neck cancer
The purpose of the study was to analyse the influence of HPV infection on the outcome of a randomized clinical trial of conventional (CF) versus 7-days-a-week postoperative radiotherapy (p-CAIR) for squamous cell cancer of the head and neck (SCCHN). Between 2001 and 2004, 279 patients with high-risk SCC of the larynx or cancer of the oral cavity/oropharynx were randomized to receive 63 Gy in fractions of 1.8 Gy given 5 days a week or 7 days a week (Radiother Oncol 87:155–163, 2008). The presence of HPV DNA in 131 archival paraffin blocks was assessed with multiplex quantitative real-time PCR using five consensus primers for the conservative L1 region and molecular beacon probes targeting 14 high-risk HPV subtypes. Following the RT-PCR procedure, we could determine the presence and type of HPV16, HPV18 and the other 12 less frequent oncogenic subtypes. Out of 131 samples, 9 were positive for HPV infection (6.9%), all of them with HPV16 subtype. None of the 65 laryngeal tumours was HPV positive. The 5-year LRC in HPV-positive patients was 100%, compared to 58% in the HPV-negative group (p = 0.02, log-rank test). Amongst 122 patients with HPV-negative tumours, 5-year LRC was 50.3% in p-CF versus 65.2 in p-CAIR (p = 0.37). HPV infection was associated with low expression of EGFR and cyclin D. This study demonstrates a favourable outcome for HPV-positive patients with SCCHN treated with postoperative radiotherapy. While considering the small number of HPV+ tumours, the data set can be considered as hypothesis generating only, the outcome raises new questions on the necessity of aggressive postoperative treatment in HPV+ patients
Dynamics of a Quantum Phase Transition and Relaxation to a Steady State
We review recent theoretical work on two closely related issues: excitation
of an isolated quantum condensed matter system driven adiabatically across a
continuous quantum phase transition or a gapless phase, and apparent relaxation
of an excited system after a sudden quench of a parameter in its Hamiltonian.
Accordingly the review is divided into two parts. The first part revolves
around a quantum version of the Kibble-Zurek mechanism including also phenomena
that go beyond this simple paradigm. What they have in common is that
excitation of a gapless many-body system scales with a power of the driving
rate. The second part attempts a systematic presentation of recent results and
conjectures on apparent relaxation of a pure state of an isolated quantum
many-body system after its excitation by a sudden quench. This research is
motivated in part by recent experimental developments in the physics of
ultracold atoms with potential applications in the adiabatic quantum state
preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic
Distinct Gamma-Band Components Reflect the Short-Term Memory Maintenance of Different Sound Lateralization Angles
Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between “preferred” and “nonpreferred” stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory
Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 2: Human papillomavirus associated oral and oropharyngeal squamous cell carcinoma
Human papillomavirus (HPV) infection of the mouth and oropharynx can be acquired by a variety of sexual and social forms of transmission. HPV-16 genotype is present in many oral and oropharyngeal squamous cell carcinomata. It has an essential aetiologic role in the development of oropharyngeal squamous cell carcinoma in a subset of subjects who are typically younger, are more engaged with high-risk sexual behaviour, have higher HPV-16 serum antibody titer, use less tobacco and have better survival rates than in subjects with HPV-cytonegative oropharyngeal squamous cell carcinoma. In this subset of subjects the HPV-cytopositive carcinomatous cells have a distinct molecular profile
Comparative efficacies of different antibiotic treatments to eradicate nontypeable Haemophilus influenzae infection
<p>Abstract</p> <p>Background</p> <p>Nonencapsulated and nontypeable <it>Haemophilus influenzae </it>(NTHi) is a major cause of human respiratory tract infections. Some strains of NTHi can cause invasive diseases such as septicemia and meningitis, even if <it>H. influenzae </it>is not generally considered to be an intracellular pathogen. There have been very few reports about the therapeutic efficacy of antibiotics against respiratory tract infection caused by NTHi in mice because it is difficult for <it>H. influenzae </it>to infect mice. Therefore, we evaluated the efficacy of antibiotics against NTHi in both a cell culture model and a mouse model of infection.</p> <p>Methods</p> <p>We used six strains of NTHi isolated from adult patients with chronic otitis media, namely three β-lactamase-negative ampicillin (AMP)-resistant (BLNAR) strains and three β-lactamase-negative AMP-susceptible (BLNAS) strains, to evaluate the efficacy of AMP, cefcapene (CFPN), levofloxacin (LVX), clarithromycin (CLR), and azithromycin (AZM) in both a cell culture infection model and a mouse infection model. In the cell culture infection model, strains that invade A549 human alveolar epithelial cells were treated with each antibiotic (1 μg/ml). In the mouse infection model, female C57BL/6 mice were intraperitoneally injected with cyclophosphamide (200 mg/kg) three days before intranasal infection with 1 × 10<sup>9 </sup>colony-forming units (CFU) of NTHi and on the day of infection. After infection, the mice were orally administered each antibiotic three times daily for three days, except for AZM, which was administered once daily for three days, at a dose of 100 mg/kg/day.</p> <p>Results</p> <p>In the cell culture infection model, it was found that two BLNAR strains were able to enter the cell monolayers by the process of macropinocytosis, and treatment with LVX yielded good bactericidal activity against both strains inside the cells. In the mouse infection model, no bacteria were detected by means of plating the lung homogenates of LVX-treated mice at day 4 after infection, while more than 10<sup>5 </sup>CFU of bacteria per tissue sample were detected in nontreated mice.</p> <p>Conclusion</p> <p>Our findings show the outcome and rich benefits of fluoroquinolone treatment of respiratory infections caused by either invasive or noninvasive BLNAR strains of NTHi.</p
Hybrids of the bHLH and bZIP Protein Motifs Display Different DNA-Binding Activities In Vivo vs. In Vitro
Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim) protein Arnt fused to the leucine zipper (LZ) dimerization domain from bZIP (basic region-leucine zipper) protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper) proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H), transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed), as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (Kd 148.9 nM and 40.2 nM, respectively), but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly α-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60–70 aa). Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions
- …