19,432 research outputs found

    Optimal distillation of a GHZ state

    Get PDF
    We present the optimal local protocol to distill a Greenberger-Horne-Zeilinger (GHZ) state from a single copy of any pure state of three qubits.Comment: RevTex, 4 pages, 2 figures. Published version, some references adde

    Three qubits can be entangled in two inequivalent ways

    Get PDF
    Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communcication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the GHZ state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.Comment: 12 pages, 1 figure; replaced with revised version; terminology adapted to earlier work; reference added; results unchange

    Modelling the spinning dust emission from LDN 1780

    Full text link
    We study the anomalous microwave emission (AME) in the Lynds Dark Nebula (LDN) 1780 on two angular scales. Using available ancillary data at an angular resolution of 1 degree, we construct an SED between 0.408 GHz to 2997 GHz. We show that there is a significant amount of AME at these angular scales and the excess is compatible with a physical spinning dust model. We find that LDN 1780 is one of the clearest examples of AME on 1 degree scales. We detected AME with a significance > 20σ\sigma. We also find at these angular scales that the location of the peak of the emission at frequencies between 23-70 GHz differs from the one on the 90-3000 GHz map. In order to investigate the origin of the AME in this cloud, we use data obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) that provides 2 arcmin resolution at 30 GHz. We study the connection between the radio and IR emissions using morphological correlations. The best correlation is found to be with MIPS 70μ\mum, which traces warm dust (T\sim50K). Finally, we study the difference in radio emissivity between two locations within the cloud. We measured a factor 6\approx 6 of difference in 30 GHz emissivity. We show that this variation can be explained, using the spinning dust model, by a variation on the dust grain size distribution across the cloud, particularly changing the carbon fraction and hence the amount of PAHs.Comment: 14 pages, 11 figures, submitted to MNRA

    Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Get PDF
    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.Comment: 19 pages, 13 figure

    Infinite boundary conditions for matrix product state calculations

    Get PDF
    We propose a formalism to study dynamical properties of a quantum many-body system in the thermodynamic limit by studying a finite system with infinite boundary conditions (IBC) where both finite size effects and boundary effects have been eliminated. For one-dimensional systems, infinite boundary conditions are obtained by attaching two boundary sites to a finite system, where each of these two sites effectively represents a semi-infinite extension of the system. One can then use standard finite-size matrix product state techniques to study a region of the system while avoiding many of the complications normally associated with finite-size calculations such as boundary Friedel oscillations. We illustrate the technique with an example of time evolution of a local perturbation applied to an infinite (translationally invariant) ground state, and use this to calculate the spectral function of the S=1 Heisenberg spin chain. This approach is more efficient and more accurate than conventional simulations based on finite-size matrix product state and density-matrix renormalization-group approaches.Comment: 10 page

    Variational quantum Monte Carlo simulations with tensor-network states

    Get PDF
    We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approach by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D*D matrices with D up to 48. The computational cost of our scheme formally scales as ND^3, whereas standard MPS approaches and the related density matrix renromalization group method scale as ND^5 and ND^6, respectively, for periodic systems.Comment: 4+ pages, 2 figures. v2: improved data, comparisons with exact results, to appear in Phys Rev Let

    Properties of Entanglement Monotones for Three-Qubit Pure States

    Get PDF
    Various parameterizations for the orbits under local unitary transformations of three-qubit pure states are analyzed. The interconvertibility, symmetry properties, parameter ranges, calculability and behavior under measurement are looked at. It is shown that the entanglement monotones of any multipartite pure state uniquely determine the orbit of that state under local unitary transformations. It follows that there must be an entanglement monotone for three-qubit pure states which depends on the Kempe invariant defined in [Phys. Rev. A 60, 910 (1999)]. A form for such an entanglement monotone is proposed. A theorem is proved that significantly reduces the number of entanglement monotones that must be looked at to find the maximal probability of transforming one multipartite state to another.Comment: 14 pages, REVTe

    A case report: Giant early gastric cancer

    Get PDF
    Indexación: Scopus; Scielo.Introducción: El cáncer gástrico es la primera causa de muerte por cáncer, en hombres, en Chile, siendo el adenocarcinoma la variante más frecuente. Caso clínico: Reportamos el caso de un cáncer gástrico incipiente gigante de 7,2 cm en un hombre de 74 años tratado en la Clínica INDISA en Santiago de Chile. El paciente fue sometido exitosamente a una gastrectomía total con linfoadenectomía D2 y esófago-yeyuno anastomosis en Y de Roux. La histología evidenció un adenocarcinoma bien diferenciado, polipoide, invasivo hasta la submucosa, sin compromiso ganglionar. A los 5 años de su cirugía, el paciente se encuentra asintomático y sin recidiva tumoral.https://www.sciencedirect.com/science/article/pii/S0379389316301600?via%3Dihu
    corecore