21,915 research outputs found

    Anomalous precursor diamagnetism at low reduced magnetic fields and the role of Tc inhomogeneities in the superconductors Pb55In45 and underdoped La1.9Sr0.1CuO4

    Full text link
    The magnetic field dependence of the magnetization was measured above the superconducting transition in a high-Tc underdoped cuprate La1.9Sr0.1CuO4 and in a low-Tc alloy (Pb55In45). Near the superconducting transition [typically for (T-Tc)/Tc<0.05] and under low applied magnetic field amplitudes [typically for H/Hc2(0)<0.01, where Hc2(0) is the corresponding upper critical field extrapolated to T=0 K] the magnetization of both samples presents a diamagnetic contribution much larger than the one predicted by the Gaussian Ginzburg-Landau (GGL) approach for superconducting fluctuations. These anomalies have been already observed in cuprate compounds by various groups and attributed to intrinsic effects associated with the own nature of these high-Tc superconductors. However, we will see here that our results in both high and low-Tc superconductors may be explained quantitatively, and consistently with the GGL behavior observed at higher fields, by just taking into account the presence in the samples of an uniform distribution of Tc inhomogeneities. These Tc inhomogeneities, which may be in turn associated with stoichiometric inhomogeneities, were estimated from independent measurements of the temperature dependence of the field-cooled magnetic susceptibility under low applied magnetic fields.Comment: 25 pages, including 6 figures and 1 table. Typos corrected. Compacte

    Entropy growth of shift-invariant states on a quantum spin chain

    Full text link
    We study the entropy of pure shift-invariant states on a quantum spin chain. Unlike the classical case, the local restrictions to intervals of length NN are typically mixed and have therefore a non-zero entropy SNS_N which is, moreover, monotonically increasing in NN. We are interested in the asymptotics of the total entropy. We investigate in detail a class of states derived from quasi-free states on a CAR algebra. These are characterised by a measurable subset of the unit interval. As the entropy density is known to vanishes, SNS_N is sublinear in NN. For states corresponding to unions of finitely many intervals, SNS_N is shown to grow slower than (logN)2(\log N)^2. Numerical calculations suggest a logN\log N behaviour. For the case with infinitely many intervals, we present a class of states for which the entropy SNS_N increases as NαN^\alpha where α\alpha can take any value in (0,1)(0,1).Comment: 18 pages, 2 figure

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure

    Synthesizing Sierpinski Antenna by Genetic Algorithm and Swarm Optimization

    Get PDF
    The paper discusses the synthesis of the Sierpinski antenna operating at three prescribed frequencies: 0.9 GHz, 1.8 GHz (both GSM) and 2.4 GHz (Bluetooth). In order to synthesize the antenna, a genetic algorithm and a particle swarm optimization were used. The numerical model of the antenna was developed in Zeland IE3D, optimization scripts were programmed in MATLAB. Results of both the optimization methods are compared and experimentally verified

    Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

    Full text link
    Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the earliest proposals for such a phase was the chiral spin liquid put forward by Kalmeyer and Laughlin in 1987 as the bosonic analogue of the fractional quantum Hall effect. Elusive for many years, recent times have finally seen a number of models that realize this phase. However, these models are somewhat artificial and unlikely to be found in realistic materials. Here, we take an important step towards the goal of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-reversal symmetry. We first provide a theoretical justification for the emergent chiral spin liquid phase in terms of a network model perspective. We then present an unambiguous numerical identification and characterization of the universal topological properties of the phase, including ground state degeneracy, edge physics, and anyonic bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and modular transformations.Comment: 9 pages, 9 figures; partially supersedes arXiv:1303.696

    Entanglement cost of mixed states

    Full text link
    We compute the entanglement cost of several families of bipartite mixed states, including arbitrary mixtures of two Bell states. This is achieved by developing a technique that allows us to ascertain the additivity of the entanglement of formation for any state supported on specific subspaces. As a side result, the proof of the irreversibility in asymptotic local manipulations of entanglement is extended to two-qubit systems.Comment: 4 pages, no figures, (v4) new results, including a new method to determine E_c for more general mixed states, presentation changed significantl

    Radio detection of the young binary HD 160934

    Get PDF
    Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 and 5 GHz, respectively. The orbital information derived from these observations was analyzed along with previously reported orbital measurements. We show that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative orbit. Revised orbital elements were estimated. Future VLBI monitoring of this pair should determine precise model-independent mass estimates for the A and c components, which will serve as calibration tests for PMS evolutionary models.Comment: 5 pages, 5 figures, accepted for publication in A&

    Trabalho com plantas medicinais e aromáticas visam o controle alternativo de doenças e pragas no sistema de produção de hortaliças orgânicas.

    Get PDF
    bitstream/item/71377/1/artigo-Mariane-Ricardo.pd
    corecore