250 research outputs found
Recommended from our members
Development of low cost packaged fibre optic sensors for use in reinforced concrete structures
There is an ongoing need to measure strains in reinforced concrete structures more reliably and under a range of circumstances e.g. long term durability (such as effects of cracking and reinforcement corrosion), response to normal working loads and response under abnormal load conditions. Fibre optic sensors have considerable potential for this purpose and have the additional advantages, including of immunity to electromagnetic interference and light weight (Grattan et al., 2000). This is important in railway scenarios and particularly so when the lines are electrified. Their small size allows for easy installation. However, their use as commercial ‘packaged’ devices (traditionally seen as necessary to achieve adequate robustness) is limited by their high cost relative to other sensor devices such as encapsulated electric resistance strain gauges. This paper describes preliminary work to produce a cost-effective and easy-to-use technique for encapsulating fibre optic sensors in resin using 3D printing techniques to produce a robust, inexpensive ‘packaged’ sensor system suitable for use with concrete structures. The work done to date has shown this to be a convenient and economical way of producing multiple sensors which were suitable for both surface mounting and embedment in reinforced concrete structures. The proof-of-concept testing to which the trial packages were subjected is described in the paper and the results indicate that 3D printed packages have considerable potential for further development and use in a variety of civil engineering applications, competing well with more conventional sensor systems
Recommended from our members
Flow measurement inside a zinc-nickel flow cell battery using FBG based sensor system
Downloading of the abstract is permitted for personal use only. A detailed knowledge of the internal flow distribution inside a zinc-nickel flow battery is of critical importance to ensure smooth flow of the electrolyte through the battery cell and better operation of the device. Information of this type can be used as a useful means of early detection of zinc deposition and dendrite formation inside the cell, negative factors which affect the flow and thus which can lead to internal short circuiting, this being a primary failure mode of these types of batteries. This deposition occurs at low pH levels when zinc reacts with the electrolyte to form solid zinc oxide hydroxides. Traditionally, manual inspection is conducted, but this is time consuming and costly, only providing what are often inaccurate results-overall it is an impractical solution especially with the wider use of batteries in the very near future. Fibre Bragg grating (FBG) sensors integrated inside the flow cell offer the advantage of measuring flow changes at multiple locations using a single fibre and that then can be used as an indicator of the correlation between the internal flow distribution and the deposition characteristics. This work presents an initial study, where two networks of FBGs have been installed and used for flow change detection in an active zinc-nickel flow battery. Data have been obtained from the sensor networks and information of battery performance completed and summarized in this paper. The approach shows promising results and thus scope for the future research into the development of this type of sensor system
Recommended from our members
Fibre Bragg Grating-based Acoustic Sensor Array for Improved Condition Monitoring of Marine Lifting Surfaces
This paper discusses a novel approach to monitor marine lifting surface conditions through using arrays of Fibre Bragg Grating (FBG)-based acoustic sensors in a marine rudder. Results from these optical sensor arrays are then cross compared with those from conventional piezoelectric (PZT) sensors. A successful proof-of-concept evaluation of the optical sensor approach was, however, first undertaken by using cascaded FBGs integrated into a glass plate, monitoring the response to dropping a standard metal ball at different locations. Data obtained were compared with colocated conventional PZT sensors acoustic sensors for comparison using triangulation to determine the location of the excitation source (a sonotrode). The results obtained verify the excellent performance of the FBG-based sensors due to the excellent agreement between these different sensor types. This gives confidence to the next-stage to scale-up the FBG sensor arrays for other marine structures, with early identification of the initiation of cavitation erosion an important priority for better operational reliability and scheduling of maintenance of marine vessels
Recommended from our members
Graphene oxide coated long period grating for optical sensing purposes
In this paper, fabrication and surrounding refractive index response of a graphene oxide (GO) coated long period grating (LPG) is presented. An improved version of the Hummer's method was followed for the synthesis of GO used in this work and GO sheets were immobilized on the LPG fibre surface by using an electrostatic self-assembly technique. In this initial performance evaluation, intensity and wavelength variations of the transmission loss bands of the GO coated LPG were recorded at room temperature and this sensor probe is introduced as a good candidate for the further development of selective biosensors
Recommended from our members
Fibre Bragg Grating-based Cascaded Acoustic Sensors for Potential Marine Structural Condition Monitoring
This paper explores the potential of using multiple Fibre Bragg grating (FBG)-based sensors for acoustic emission (AE) detection, thus offering an effective alternative to conventional piezoelectric (PZT) sensors, especially where they have shown limitations in use, such as in the marine sector. A cascaded fibre optic acoustic sensor system, using optical filter signal demodulation has been developed and its performance extensively evaluated. To undertake this under standardized conditions, the optical sensor system was evaluated using a glass plate to detect the acoustic signal, followed by an evaluation using a metal plate to identify the location of acoustic sources, when subjected to sonotrode excitation, mimicking acoustic detection in cavitation detection. Under these circumstances, a very good agreement has been reached between the outputs of the optical acoustic sensors and of the co-located PZT acoustic sensors. This work confirms the utility of these sensors – they can detect not only weak AE signals, but also enable multipoint simultaneous measurement, showing their potential for condition monitoring applications, especially in the marine sector
Recommended from our members
A temperature compensated fibre Bragg grating (FBG)-based sensor system for condition monitoring of electrified railway pantograph
This paper presents the results obtained from fibre Bragg grating (FBG) sensors integrated into a railway current-collecting pantograph for accurate measurement of contact force and contact location when it is infjected to various temperature conditions. The temperature change of the pantograph is simulated, at the industrial laboratory of Brecknell Willis in the UK, by changing the DC current applied to pantograph from 0 to 1500 A. This test is primarily designed to verify the effectiveness of the temperature compensation mechanism built in the FBG sensor design. For this verification, 3 thermocouples co-located with the FBG sensor packages are used to measure the temperature change seen from 25 °C to 55 °C. The tests were repeated several times and the sensor system has shown its temperatureindependence, confirming that the intrinsic cross-sensitivity of FBGs to temperature variation for strain measurement has been fully compensated through the use of this innovative sensor design and data processing
Recommended from our members
Optical fibre sensing: A solution for industry
Optical fibres have been explored widely for their sensing capability to meet increasing industrial needs, building on their success in telecommunications. This paper provides a review of research activities at City University of London in response to industrial challenges through the development of a range of fibre Bragg grating (FBG)-based sensors for transportation structural monitoring. For marine propellers, arrays of FBGs mapped onto the surface of propeller blades allow for capturing vibrational modes, with reference to simulation data. The research funded by EU Cleansky programme enables the development of self-sensing electric motor drives to support 'More Electric Aircraft' concept. The partnership with Faiveley Brecknell Willis in the UK enables the integration of FBG sensors into the railway current-collecting pantographs for real-time condition monitoring when they are operating under 25kV conditions
The consensus rye microsatellite map with EST-SSRs transferred from wheat
Microsatellite (SSR) markers with known precise intrachromosomal locations are widely used for mapping genes in rye and for the investigation of wheat-rye translocation lines and triticale highly demanded for mapping economically important genes and QTL-analysis. One of the sources of novel SSR markers in rye are microsatellites transferable from the wheat genome. Broadening the list of available SSRs in rye mapped to chromosomes is still needed, since some rye chromosome maps still have just a few microsatellite loci mapped. The goal of the current study was to integrate wheat EST-SSRs into the existing rye genetic maps and to construct a consensus rye microsatellite map. Four rye mapping populations (P87/P105, N6/N2, N7/N2 and N7/N6) were tested with CFE (EST-SSRs) primers. A total of 23 Xcfe loci were mapped on rye chromosomes: Xcfe023, -136 and -266 on chromosome 1R, Xcfe006, -067, -175 and -187 on 2R, Xcfe029 and -282 on 3R, Xcfe004, -100, -152, -224 and -260 on 4R, Xcfe037, -208 and -270 on 5R, Xcfe124, -159 and -277 on 6R, Xcfe010, -143 and -228 on 7R. With the exception of Xcfe159 and Xcfe224, all the Xcfe loci mapped were found in orthologous positions considering multiple evolutionary translocations in the rye genome relative to those of common wheat. The consensus map was constructed using mapping data from the four bi-parental populations. It contains a total of 123 microsatellites, 12 SNPs, 118 RFLPs and 2 isozyme loci
Recommended from our members
A Fiber Bragg Grating (FBG)-Based Sensor System for Anaerobic Biodigester Humidity Monitoring
An operational, Fiber Bragg Grating (FBG)-based sensing system, specifically designed to monitor conditions in a harsh industrial environment is reported. The sensors used were placed inside tanks with high levels of methane (CH 4 ), carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S) gases and high relative humidity in the North Head sewage treatment plant in Sydney, Australia. The sensor system was developed primarily to monitor the effect of >98% relative humidity and temperature changes on the corrosion rates of various materials inside the tanks. Data have been obtained from the use of the system for eight months: these have been correlated with key climate data including the changing weather conditions experienced during the continued monitoring activity. The sensor system specifically developed has been shown to be sufficiently robust to work well, and safely, in such a harsh environment (due to the gaseous H 2 S and CH 4 present) with no signs of deterioration of the sensors or of the signals obtained from the system. The remote operation through flexible data transmission has allowed continuous and up-to-date monitoring of the conditions inside the tanks
Recommended from our members
Extended study of fiber optic-based humidity sensing system performance for sewer network condition monitoring
This paper reports on an extended (20-month) period of monitoring of humidity in situ at two locations in the sewer network operated by Sydney Water using a fibre optic network into which a series of Bragg Grating-based sensors had been installed. The locations (Eustace Street in Manly, Sydney and Old Toongabbie at Oakes Reserve, western Sydney, Australia) both had different operating environments and thus conditions for evaluating the sensor system. It was designed to provide a solution to enable long term, low cost and more reliable monitoring in the harsh conditions of the sewer environments in terms of high relative humidity > 95% and a broad range of hydrogen sulfide levels. The results of the study show that even after ~20 months of use, the same sensor is reliably recording humidity and temperature in the sewer environment – overcoming the problems seen with conventional electrical sensors, which typically fail within a couple of weeks of use in this continuous high acid/high humidity environment. The data, recorded constantly from the sensor system, were stable throughout the full monitoring period and further, a comparison with the changing weather conditions was made over the different seasons during the study. The sensor system developed was battery operated and had 4G connectivity for data transfer and debugging. These features have enabled the system to be installed in situations where power is not available and operate successfully with minimal human operation, thus allowing for additional systems to be integrated to the measurement system in the future
- …