47 research outputs found

    Cosmological and black hole brane-world Universes in higher derivative gravity

    Get PDF
    General model of multidimensional R2R^2-gravity including Riemann tensor square term (non-zero cc case) is considered. The number of brane-worlds in such model is constructed (mainly in five dimensions) and their properties are discussed. Thermodynamics of S-AdS BH (with boundary) is presented when perturbation on cc is used. The entropy, free energy and energy are calculated. For non-zero cc the entropy (energy) is not proportional to the area (mass). The equation of motion of brane in BH background is presented as FRW equation. Using dual CFT description it is shown that dual field theory is not conformal one when cc is not zero. In this case the holographic entropy does not coincide with BH entropy (they coincide for Einstein gravity or c=0c=0 HD gravity where AdS/CFT description is well applied). Asymmetrically warped background (analog of charged AdS BH) where Lorentz invariance violation occurs is found. The cosmological 4d dS brane connecting two dS bulk spaces is formulated in terms of parameters of R2R^2-gravity. Within proposed dS/CFT correspondence the holographic conformal anomaly from five-dimensional higher derivative gravity in de Sitter background is evaluated.Comment: LaTeX file 40 pages, references added, version to appear in PR

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    biological control of olive fruit fly (Diptera: Tephritidae) by releases of Psyttalia cf. concolor (Hymenoptera: braconidae) in california, parasitoid longevity in presence of the Host, and Host status of Walnut Husk fly

    No full text
    ABStrAct: The larval parasitoid, Psyttalia cf. concolor, collected from tephritids infesting coffee in Kenya and reared on Mediterranean fruit fly, Ceratitis capitata Weidemann, in Guatemala by USDA-APHIS, PPQ, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea. Free releases of the parasitoids were made in olive trees infested with olive fruit fly at a coastal and inland valley location during the fall and early winter of 2005. The relative humidity during the releases was significantly higher at the coastal location. Mean percentage parasitism ranged from 0.5 to 4 and 1.5 to 30 at the coastal and inland valley locations respectively, based on same season recovery of the F 1 generation. One parasitoid was found in infested olives in the next crop of the following year in San Jose. Survival of the parasitoid in the greenhouse in the presence of olive fruit fly infested olives was not significantly different than in the presence of non-infested olives. The greatest number of progeny was produced from female parasitoids that were 12-16 d old. In laboratory tests, a few individuals of the parasitoid successfully completed one life cycle in walnut husk fly, Rhagoletis completa Cresson, infested English walnuts, Juglans regia L
    corecore