172 research outputs found

    Asymmetric Mach-Zehnder fiber interferometer test of the anisotropy of the speed of light

    Full text link
    Two optical fiber Mach-Zehnder interferometers were constructed in an environment with a temperature stabilization of better than 1 mK per day. One interferometer with a length of 2 m optical fiber in each arm with the main direction of the arms parallel to each other. A path (length 175 mm) filled with atmospheric air is inserted in one arm. Another interferometer with a length of 2 m optical fiber in each parallel arm acts as a control. In each arm 1 m of fiber was wound around a ring made of piezo material enabling the control of the length of the arms by means of a voltage. The influence of rotation of the interferometers at the Earth surface on the observed phase differences was determined. For one interferometer (with the air path) it was found that the phase difference depends on the azimuth of the interferometer. For the other one no relevant dependence on the azimuth has been measured.Comment: 6 pages, 6 figure

    Low gH/gL (Sub)Species-Specific Antibody Levels Indicate Elephants at Risk of Fatal Elephant Endotheliotropic Herpesvirus Hemorrhagic Disease

    Get PDF
    Elephant endotheliotropic herpesviruses (EEHVs), of which eleven (sub)species are currently distinguished, infect either Asian (Elephas maximus) or African elephants (Loxodonta species). While all adult elephants are latently infected with at least one EEHV (sub)species, young elephants, specifically those with low to non-detectable EEHV-specific antibody levels, may develop fatal hemorrhagic disease (EEHV-HD) upon infection. However, animals with high antibody levels against EEHV(1A) gB, an immunodominant antigen recognized by antibodies elicited against multiple (sub)species, may also occasionally succumb to EEHV-HD. To better define which animals are at risk of EEHV-HD, gB and gH/gL ELISAs were developed for each of the Asian elephant EEHV subspecies and assessed using 396 sera from 164 Asian elephants from European zoos. Antibody levels measured against gB of different (sub)species correlated strongly with one another, suggesting high cross-reactivity. Antibody levels against gH/gL of different subspecies were far less correlated and allowed differentiation between these (sub)species. Importantly, while high gB-specific antibody levels were detected in the sera of several EEHV-HD fatalities, all fatalities (n = 23) had low antibody levels against gH/gL of the subspecies causing disease. Overall, our data indicate that (sub)species-specific gH/gL ELISAs can be used to identify animals at risk of EEHV-HD when infected with a particular EEHV (sub)species

    Blending hard and soft science: the Follow the Technology approach to analyzing and evaluating technology change

    Get PDF
    Published online: 20 Dec 2001The types of technology change catalyzed by research interventions in integrated natural resource management (INRM) are likely to require much more social negotiation and adaptation than are changes related to plant breeding, the dominant discipline within the system of the Consultative Group on International Agricultural Research (CGIAR). Conceptual models for developing and delivering high-yielding varieties have proven inadequate for delivering natural resource management (NRM) technologies that are adopted in farmers' fields. Successful INRM requires tools and approaches that can blend the technical with the social, so that people from different disciplines and social backgrounds can effectively work and communicate with each other. This paper develops the "follow-the-technology" (FTT) approach to catalyzing, managing, and evaluating rural technology change as a framework that both "hard" and "soft" scientists can work with. To deal with complexity, INRM needs ways of working that are adaptive and flexible. The FTT approach uses technology as the entry point into a complex situation to determine what is important. In this way, it narrows the research arena to achievable boundaries. The methodology can also be used to catalyze technology change, both within and outside agriculture. The FTT approach can make it possible to channel the innovative potential of local people that is necessary in INRM to "scale up" from the pilot site to the landscape. The FTT approach is built on an analogy between technology change and Darwinian evolution, specifically between "learning selection" and natural selection. In learning selection, stakeholders experiment with a new technology and carry out the evolutionary roles of novelty generation, selection, and promulgation. The motivation to participate is a "plausible promise" made by the R&D team to solve a real farming problem. Case studies are presented from a spectrum of technologies to show that repeated learning selection cycles can result in an improvement in the performance of the plausible promise through adaptation and a sense of ownership by the stakeholders

    Low gH/gL (sub)species-specific antibody levels indicate elephants at risk of fatal elephant endotheliotropic herpesvirus hemorrhagic disease

    Get PDF
    DATA AVAILABILITY STATEMENT : The data supporting the findings of this study are available from the corresponding authors upon reasonable request.Elephant endotheliotropic herpesviruses (EEHVs), of which eleven (sub)species are currently distinguished, infect either Asian (Elephas maximus) or African elephants (Loxodonta species). While all adult elephants are latently infected with at least one EEHV (sub)species, young elephants, specifically those with low to non-detectable EEHV-specific antibody levels, may develop fatal hemorrhagic disease (EEHV-HD) upon infection. However, animals with high antibody levels against EEHV(1A) gB, an immunodominant antigen recognized by antibodies elicited against multiple (sub)species, may also occasionally succumb to EEHV-HD. To better define which animals are at risk of EEHV-HD, gB and gH/gL ELISAs were developed for each of the Asian elephant EEHV subspecies and assessed using 396 sera from 164 Asian elephants from European zoos. Antibody levels measured against gB of different (sub)species correlated strongly with one another, suggesting high cross-reactivity. Antibody levels against gH/gL of different subspecies were far less correlated and allowed differentiation between these (sub)species. Importantly, while high gB-specific antibody levels were detected in the sera of several EEHV-HD fatalities, all fatalities (n = 23) had low antibody levels against gH/gL of the subspecies causing disease. Overall, our data indicate that (sub)species-specific gH/gL ELISAs can be used to identify animals at risk of EEHV-HD when infected with a particular EEHV (sub)species.Named Fund Friends of VetMed.https://www.mdpi.com/journal/viruseshj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-bein

    Mach-Zehnder fiber interferometer test of the anisotropy of the speed of light

    Full text link
    Two optical fiber Mach-Zehnder interferometers were constructed in an environment with a temperature stabilization of better than 1 mK per day. One interferometer with a length of 12 m optical fiber in each arm with the main direction of the arms perpendicular to each other. Another with a length of 2 m optical fiber in each arm where the main direction of the arms are parallel as a control. In each arm 1 m of fiber was wound around a ring made of piezo material enabling the control of the length of the arms by means of a voltage. The influence of the temperature on the optical phase difference between the interferometer arms was measured. It is attributed to the temperature change induced variation of the interaction region of the optical fiber couplers. Further, the influence of rotation of the interferometers at the Earth surface on the observed phase differences was determined. For one interferometer (with the long and perpendicular arms) it was found that the phase difference depends on the azimuth of the interferometer. For the other one (with the short and parallel arms) no relevant dependence on the azimuth has been measured.Comment: Errata: data of interferometers were interchange

    Split-Brain: what we know now and why this is important for understanding consciousness

    Get PDF
    Recently, the discussion regarding the consequences of cutting the corpus callosum (“split-brain”) has regained momentum (Corballis, Corballis, Berlucchi, & Marzi, 2018; Pinto et al., 2017; Pinto, Lamme, & de Haan, 2017; Volz & Gazzaniga, 2017; Volz, Hillyard, Miller, & Gazzaniga, 2018). This collective review paper aims to summarize the empirical common ground, to delineate the different interpretations, and to identify the remaining questions. In short, callosotomy leads to a broad breakdown of functional integration ranging from perception to attention. However, the breakdown is not absolute as several processes, such as action control, seem to remain unified. Disagreement exists about the responsible mechanisms for this remaining unity. The main issue concerns the first-person perspective of a split-brain patient. Does a split-brain harbor a split consciousness or is consciousness unified? The current consensus is that the body of evidence is insufficient to answer this question, and different suggestions are made to how future studies might address this paucity. In addition, it is suggested that the answers might not be a simple yes or no but that intermediate conceptualization need to be considered

    EEHV1A glycoprotein B subunit vaccine elicits humoral and cell-mediated immune responses in mice

    Get PDF
    DATA AVAILABILITY : Data will be made available on request.Asian elephants are an endangered species facing many threats, including severe hemorrhagic disease (HD) caused by the elephant endotheliotropic herpesvirus (EEHV). EEHV-HD is the leading cause of death in captive juvenile Asian elephants in North America and Europe, and also affects elephants in their natural range countries. Significant challenges exist for successful treatment of EEHV-HD, which include timely recognition of disease onset and limited availability of highly effective treatment options. To address this problem, our goal is to prevent lethal disease in young elephants by developing a vaccine that elicits robust and durable humoral and cell-mediated immunity against EEHV. EEHV glycoprotein B (gB) is a major target for cellular and humoral immunity in elephants previously exposed to EEHV. Therefore, we generated a vaccine containing recombinant EEHV1A gB together with a liposome formulated TLR-4 and saponin combination adjuvant (SLA-LSQ). CD-1 mice that received one or two vaccinations with the vaccine elicited significant anti-gB antibody and polyfunctional CD4+ and CD8+ T cell responses, while no adverse effects of vaccination were observed. Overall, our findings demonstrate that an adjuvanted gB protein subunit vaccine stimulates robust humoral and cell-mediated immune responses and supports its potential use in elephants.The Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the CPRIT Core Facility Support Award, the NIH, the International Elephant Foundation (IEF) and Houston Zoo and funds acquired via Named Fund Friends of VetMed to the Utrecht University EEHV research group.http://www.elsevier.com/locate/vaccineam2023Veterinary Tropical Disease
    • 

    corecore