96 research outputs found

    Reproduction couleur par trames irrégulières et semi-régulières

    Get PDF
    In the printing industry, one of the most common methods for reproducing halftone images using bilevel printing devices is clustered-dot ordered dithering. The images produced using this method are quite faithful to the original and are visually pleasing. Nevertheless, only rational angles are attainable with clustered-dot dithering, due to the discrete nature of the grids. This phenomenon can become detrimental in the case of four-color printing, when different screen angles and maybe even different screen frequencies are used for separate color planes, thus producing a so-called Moiré phenomenon. Another important drawback, the so-called banding or contouring effect, is related to the limited area of basic screen elements used in traditional dithering. In order to deal with these problems, we have developed, within the scope of our research, several new techniques for digital halftoning: (1) pseudo-random halftone screening, (2) a new method for generating clustered-dot halftone images having a number of reproducible gray or colour levels which is independent of the screen element size (CombiScreen), (3) rotated clustered-dot dithering, based on discrete one-to-one rotation, and (4) rotated dispersed-dot dither. A new method of pseudo-random halftone screening is described. It starts by obtaining the quasi-random distribution of tile centers according to some well-defined spectral characteristics. We then obtain the desired tesselation of the output device space by applying the Voronoi polygonization process. Then, an analytic black-dot curve is calculated according to the resampled input signal level and the area of each given tile. This analytic curve is scan-converted to obtain the blackened pixels. In the second approach, we associate threshold values to all pixels inside every tile according to some specially tailored analytic spot function. Then, the standard threshold comparison process is applied. Unlike known error-diffusion techniques, the pseudo-random halftone screening technique can be applied to a high resolution printing process. The characteristic screen element size can be properly chosen so as to ensure the best trade-off between the printing process constraints and the most precise printing. The described halftone algorithm seems to be appropriate for high-resolution color and black&white devices (above 1000 dpi). A new method (CombiScreen) is proposed for generating clustered-dot halftone images on raster printing devices having a number of reproducible gray or colour levels which is independent of the screen element size. The dither tiles generated by this method may contain several screen elements having any rational orientation and size. Threshold values are distributed among the cells of the dither tile so as to produce a large range of gray values, while at the same time preserving the clustered-dot behavior of individual screen elements. When rendering images at smoothly increasing intensity levels, this new method generates few contouring effects and other visible artifacts. The method works equally well for quadratic, rectangular, parallelogram and hexagonally shaped screen elements. Resulting dither tiles are generally either of parallelogram or of hexagonal shape. Since CombiScreen enables the screen dot frequency or orientation to be chosen independently of the number of gray levels, it has proven to be specially effective when printing at resolutions between 150 to 600 dpi with ink jet printers and at resolutions between 300 and 1200 dpi with xerographic printers. A new operator of discrete one-to-one rotation is described. It offers means previously unknown in the art for generating rotated screens which approximate irrational angles with high-precision, producing much less disturbing interferences and artifacts than other methods. Therefore, a carefully prepared dither tile incorporating screen elements with the desired period, initial orientation, and dither threshold values defining their screen dot shape growth behavior can be rotated by discrete one-to-one rotation and keep the desired screen element period, the number of cells per screen element and the threshold values associated with each screen element cell, thereby preserving the screen dot shape growth behavior of the original dither tile. Several different discrete one-to-one rotation variants are described: a small angle rotation technique valid for a subset of rational rotation angles, a rigid band technique and a technique based on discrete shearing transformations. The high-quality of the so rotated dither tile is due to the fact that discrete one-to-one rotation preserves the exact number of elementary cells per screen element and their exact dither threshold values. The described method provides a new range of solutions for obtaining high-quality digital angled halftone screens. High-quality solutions can be found for generating three digital angled halftone screens, each 30° apart from each other, as known from traditional photographic colour screening techniques. Further solutions minimizing Moiré effects may be obtained by halftone screens whose first order frequency component vectors sum up to zero. This new method has turned out to be particularly effective when printing with color ink jet printers at resolutions between 150 and 800 dpi as well as with xerographic printers at resolutions between 300 and 1200 dpi. Rotated dispersed-dot dither is based on the discrete one-to-one rotation of a Bayer dispersed-dot dither array. The halftone patterns produced by the rotated dither method therefore incorporate fewer disturbing artifacts than the horizontal and vertical components present in most of Bayer's halftone patterns. In grayscale wedges produced by rotated dither, texture changes at consecutive gray levels are much smoother than in error diffusion or in Bayer's dispersed-dot dither methods, thereby avoiding contouring effects. Due to its semi-clustering behavior at mid-tones, rotated dispersed-dot dither exhibits an improved tone reproduction behavior on printers having a significant dot gain, while maintaining the high detail rendition capabilities of dispersed-dot halftoning algorithms. This technique has successfully been applied to in-phase color reproduction on ink-jet printers as well as to black and white reproduction on laser printers

    Digital facial engraving

    Get PDF
    This contribution introduces the basic techniques for digital facial engraving, which imitates traditional copperplate engraving. Inspired by traditional techniques, we first establish a set of basic rules thanks to which separate engraving layers are built on the top of the original photo. Separate layers are merged according to simple merging rules and according to range shift/scale masks specially introduced for this purpose. We illustrate the introduced technique by a set of black/white and color engravings, showing different features such as engraving-specific image enhancements, mixing different regular engraving lines with mezzotint, irregular perturbations of engraving lines etc. We introduce the notion of engraving style which comprises a set of separate engraving layers together with a set of associated range shift/scale masks. The engraving style helps to port the look and feel of one engraving to another. Once different libraries of pre-defined mappable engraving styles and an appropriate user interface are added to the basic system, producing a decent gravure starting from a simple digital photo will be a matter of seconds. The engraving technique described in this contribution opens new perspectives for digital art, adding unprecedented power and precision to the engraver's work

    Halftoning by rotating non-Bayer dispersed dither arrays

    Get PDF
    We propose a new operator for creating rotated dither threshold arrays. This new discrete one- to-one rotation operator is briefly explained. We analyze its application to different dispersed- dot dither arrays such as hexagonal dispersed dither arrays and 3X3 matrix-based Bayer- expanded dither arrays and compare the results with the ones obtained by rotating standard Bayer dither arrays. We show that the rotation operator introduced new lower-frequency components that, for example in the case of rotated dispersed-dot Bayer dither, produces a slight clustering effect, improving the tone reproduction behavior of the halftone patterns. In other cases, such as hexagonal dispersed dither, these new lower frequency components are responsible for strong interferences in the rotated halftone array. When applied to 3x3 matrix- based Bayer-expanded dither arrays, the rotation operator induces sequences of short horizontal and vertical patterns that have very good tone reproduction behavior in the dark tones. Besides their used in black and white printing, rotated dispersed-dot dither halftoning techniques have also been successfully applied to in-phase color reproduction on inkjet printers

    Structure artifact free multi-level error diffusion algorithm

    Get PDF
    Error-diffusion is widely used to generate intensity levels between the primary levels of multi-level colour printing devices (ink-jet printers, electrophotographic printers). Standard error-diffusion algorithms produce structure artifacts at rational intensity levels such as 1/3, 1/2 and 2/3. The boundary between structure artifacts breaks the visual continuity in regions of low intensity gradients and generates undesirable false contours. These undesirable structure artifacts are also visible when error-diffusion is used to generate intermediate intensity levels between primary levels. In this contribution, we propose to remove these structure artifacts by introducing small discontinuities in the tone correction curve, thereby avoiding reproducing the intensity levels responsible for the generation of structure artifacts. The method can not be applied to bilevel printing, since the forbidden intensity regions responsible for the structure artifacts would be too large. In multi-level colour printing however, the forbidden intensity regions are small enough and do not produce any visible intensity breaks in varying intensity wedges

    Multi-color and artistic dithering

    Get PDF
    A multi-color dithering algorithm is proposed, which converts a barycentric combination of color intensities into a multi-color non-overlapping surface coverage. Multi-color dithering is a generalization of standard bi-level dithering. Combined with tetrahedral color separation, multi-color dithering makes it possible to print images made of a set of non-standard inks. In contrast to most previous color halftoning methods, multi-color dithering ensures by construction that the different selected basic colors are printed side by side. Multi-color dithering is applied to generate color images whose screen dots are made of artistic shapes (letters, symbols, ornaments, etc.). Two dither matrix postprocessing techniques are developed, one for enhancing the visibility of screen motives and one for the local equilibration of large dither matrices. The dither matrix equilibration process corrects disturbing local intensity variations by taking dot gain and the human visual system transfer function into account. Thanks to the combination of the presented techniques, high quality images can be produced, which incorporate at the micro level the desired artistic screens and at the macro level the full color image. Applications include designs for advertisements and posters as well as security printing. Multi-color dithering also offers new perspectives for printing with special inks, such as fluorescent and metallic inks

    Efficient product sampling using hierarchical thresholding

    Get PDF
    We present an efficient method for importance sampling the product of multiple functions. Our algorithm computes a quick approximation of the product on the fly, based on hierarchical representations of the local maxima and averages of the individual terms. Samples are generated by exploiting the hierarchical properties of many low-discrepancy sequences, and thresholded against the estimated product. We evaluate direct illumination by sampling the triple product of environment map lighting, surface reflectance, and a visibility function estimated per pixel. Our results show considerable noise reduction compared to existing state-of-the-art methods using only the product of lighting and BRD

    Towards human retinal cones spatial distribution modeling

    Get PDF
    International audienceSampling is the reduction of a continuous signal into a discrete one, or the selection of a subset from a discrete set of signals. In the human retina, the mosaic of the cone photoreceptor cells samples the retinal optical projection of the scene, achieving the first neural coding of the spectral information from the light that enters the eye. To solve the sampling problem, the human retina has adopted an arrangement of photoreceptors that is neither perfectly regular nor perfectly random. Local analysis of foveal mosaics shows that cones are arranged in hexagonal or triangular clusters but extending this analysis to larger areas shows characteristics such as parallel curving and circular rows of cones associated with rotated local clusters. This aim of this study is to identify an algorithm capable of generating sampling arrays with the same range of densities in the retina and use specific metrics to compare the spatial and spectral properties of the cones' distribution. We examined the human cone sampling by calculating the Nearest Neighbor (NN) regularity index of the population of cones in images of human retina. For testing, we used pure uniform sampling, Green noise and Pink noise samplers, a jittered sampler, a Poisson-Disk sampler and a Blue noise sampler. As reference we adopted the approach called Blue Noise Through Optimal Transport (BNOT), developed by de Goes et al. [1], because it allows to achieve the best Blue Noise distribution known today. The cone mosaics used for this work are from previously published images of patches of real human retinas. The x and y coordinates of the cells inner segments were manually plotted, a k-d tree structure has been used to find the nearest neighbor for each point, the Euclidean distance was calculated for each pair found this way and all the results are classified in histograms. Each distribution of nearest neighbors can be described by a normal Gaussian distribution: the regularity index is a quantitative method used for assessing spatial regularity of photoreceptor distributions and is expressed by the ratio of the mean µ by the standard deviation σ. This index is reported to be 1.9 for a full random sampling and the more regular the arrangement, the higher the value, usually in the range of 3-8 for retinal mosaics. In contrast with previous claims, our calculated indexes range from 8 to 12. The indexes for data generated with Green noise and Pink noise are assimilable to those of a full random sampling, in fact they are even lower, averaging 1.3 and 1.4 respectively; meanwhile, for the BNOT data, the indexes values are much higher, more than the double of the highest values for retinal RIs. Given the fact that fully regular hexagonal or square patterns are proven to have poor sampling properties and therefore not suitable for simulating cones distribution, while having infinite RI, in the scope of this work a higher RI indicates that BNOT is better at generating point processes than the other analyzed point processes. Our results show that blue noise sampling can describe features of a human retinal cone distribution with a certain degree of similarity to the available data and can be efficiently used for modeling local patches of retina. Given the nature of blue noise algorithms, it should be possible to develop an adaptive sampling model that spans the whole retina. We hope this work can be useful to understand how spatial distribution affects the sampling of a retinal image, or the mechanisms underlying the development of this singular distribution of neuron cells and the implications it has on human vision
    • …
    corecore