30 research outputs found

    Literacy and recent history of diarrhoea are predictive of plasmodium falciparum parasitaemia in Kenyan adults

    Get PDF
    Background - Malaria is one of the most serious health problems in Kenya. In 2004, the Kenya Medical Research Institute and the US Army Medical Research Unit – Kenya surveyed adults in Samburu, Malindi, and Busia districts to determine socioeconomic risk factors for infection. Methods - Sociodemographic, health, and antimalarial data were collected along with blood for malaria testing. A smear was considered negative only if no Plasmodium falciparum parasites were observed in 100 high-powered fields. Univariate analysis was performed with Pearson\u27s Chi-square test and univariate logistic regression. A multivariate logistic regression model was then created which included only variables found to be at least marginally significant in univariate analysis. Results - A total of 1,141 subjects were recruited: 238 from Samburu, 442 from Malindi, and 461 from Busia. Smear positivities for P. falciparum were 1.7% in Samburu, 7.2% in Malindi and 22.3% in Busia. Interdistrict differences were statistically significant (p \u3c 0.001) in univariate analysis and in a multivariate logistic regression model which included district, literacy, occupation, and recent illness as independent variables. In the model, literacy and recent diarrhoeal illness were positively and at least marginally significantly associated with parasitaemia (p = 0.023 and p = 0.067, respectively). Neither age, sex, occupation, history of malaria in the previous three months, nor use of antimalarials in the previous four weeks were significantly associated with parasitaemia. Conclusion - While district of residence was the variable most highly predictive for parasitaemia among Kenyan adults surveyed, both a recent history of diarrhoeal illness and literacy were at least marginally statistically significant predictors

    Serological evidence of chikungunya virus infection among suspected measles cases in selected regions of Kenya : 2008-2014

    Get PDF
    Chikungunya virus (family Togavirdae and genus Alphavirus) is an emerging and reemerging virus of public health importance both regionally and globally. In Kenya, about 50-60% of the suspected measles cases remain undiagnosed once measles and rubella is ruled out by immunoglobulin M (IgM) ELISA thus prompted the need to do differential diagnosis on the measles/rubella negative samples. Nothing is known about the role played by chikungunya infection among these suspected measles cases. Febrile rash illness is a common clinical presentation of arboviruses, including chikungunya. In this study, we conducted a serosurvey to explore the possible role of chikungunya infections among suspected measles cases in Kenya that had tested negative for measles and rubella. Sera were tested by commercially available ELISA for the presence of IgG and IgM antibodies against the chikungunya virus. All positive samples for chikungunya by ELISA were confirmed by plaque reduction neutralization test (PRNT), and to rule out cross-reactivity with other alphaviruses a panel of viruses was used, namely o' nyong' nyong, Semliki Forest, and Sindbis viruses. Of the 392 serum samples screened, 0.3% (n = 1) tested positive for IgM antibodies, while 4.6% (n = 18) tested positive for IgG antibodies against the chikungunya virus. PRNT results indicated 2 (11%) chikungunya positives and 7 (38.9%) o' nyong' nyong positives. We recommend awareness among health care providers and improved surveillance for these arboviruses by both serology and molecular testing. Testing for other pathogens should also be done to improve disease detection and diagnosis.http://online.liebertpub.com/VBZ2021-12-01hj2020Medical Virolog

    Yellow Fever Outbreak, Imatong, Southern Sudan

    Get PDF
    In May 2003, the World Health Organization received reports about a possible outbreak of a hemorrhagic disease of unknown cause in the Imatong Mountains of southern Sudan. Laboratory investigations were conducted on 28 serum samples collected from patients in the Imatong region. Serum samples from 13 patients were positive for immunoglobulin M antibody to flavivirus, and serum samples from 5 patients were positive by reverse transcription–polymerase chain reaction with both the genus Flavivirus–reactive primers and yellow fever virus–specific primers. Nucleotide sequencing of the amplicons obtained with the genus Flavivirus oligonucleotide primers confirmed yellow fever virus as the etiologic agent. Isolation attempts in newborn mice and Vero cells from the samples yielded virus isolates from five patients. Rapid and accurate laboratory diagnosis enabled an interagency emergency task force to initiate a targeted vaccination campaign to control the outbreak

    Seroprevalence and distribution of arboviral infections among rural Kenyan adults: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthorpod-borne viruses (arboviruses) cause wide-spread morbidity in sub-Saharan Africa, but little research has documented the burden and distribution of these pathogens.</p> <p>Methods</p> <p>Using a population-based, cross-sectional study design, we administered a detailed questionnaire and used ELISA to test the blood of 1,141 healthy Kenyan adults from three districts for the presence of anti-viral Immunoglobulin G (IgG) antibodies to the following viruses: dengue (DENV), West Nile (WNV), yellow fever (YFV), Chikungunya (CHIKV), and Rift Valley fever (RVFV).</p> <p>Results</p> <p>Of these, 14.4% were positive for DENV, 9.5% were WNV positive, 9.2% were YFV positive, 34.0% were positive for CHIKV and 0.7% were RVFV positive. In total, 46.6% had antibodies to at least one of these arboviruses.</p> <p>Conclusions</p> <p>For all arboviruses, district of residence was strongly associated with seropositivity. Seroprevalence to YFV, DENV and WNV increased with age, while there was no correlation between age and seropositivity for CHIKV, suggesting that much of the seropositivity to CHIKV is due to sporadic epidemics. Paradoxically, literacy was associated with increased seropositivity of CHIKV and DENV.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Investigation of laboratory confirmed Dengue outbreak in North-eastern Kenya, 2011.

    No full text
    The first laboratory confirmed dengue outbreak in Kenya was reported in coastal towns of Malindi and Kilifi in 1982. Since then, no other outbreak had been confirmed in Kenya. Dengue outbreak was confirmed among African Mission soldiers in Somalia (AMISOM) between May to October 2011. From September 2011, an upsurge of febrile patients who were negative for malaria on microscopy were reported in several health facilities in Mandera town, an adjacent area to Somalia in northern Kenya. We investigated a suspected dengue outbreak in Mandera town from 26th September 2011 to 5th October 2011. A suspected case was defined as acute onset of fever with two or more of the following: headache, arthralgia, myalgia, rash and hemorrhages and negative malaria microscopy results in a person presenting to a health facility in Mandera town from 1st August to 2nd October 2011. We prospectively identified new cases meeting the suspect case definition from 2nd October to 5th October 2011 and we collected blood samples from consenting patients. Blood was collected into plastic vacutainers and stored in dry shipper at -80oc to laboratory for dengue virus testing using real time reverse transcriptase polymerase chain reaction (rRT-PCR). We administered a standardized form to obtain clinical information. We calculated descriptive statistics to describe the outbreak. A total of 1,332 patients had been line listed by the district surveillance team, of which 381 (29%) met our suspect case definition of dengue. Cases peaked between 10th September and 1st October 2011 and thereafter declined. We prospectively identified 33 cases meeting the suspect case definition, of whom 30 (91%) were positive for dengue virus serotype 3 by PCR. Among the 30 laboratory confirmed patients, 20 (67%) required hospitalization (Median hospitalization period, two days with a range: 1-4 days)). And of these, 26 (86%) patients reported aches and pain, 16 (53%) reported vomiting, and four (13%) gingival bleeding. Twenty-three (77%) received anti-malarial therapy. Among laboratory-confirmed dengue patients, seven (23%) had malaria co-infection. This was the second confirmed Dengue outbreak in Kenya, and highlighted the need for improved surveillance to better define disease burden and continuous education to medical personnel to improve detection and clinical management. We also recommended enhanced community education for disease prevention

    Distribution of suspected dengue fever cases by age group during the outbreak in Mandera east district, 2011.

    No full text
    <p>Distribution of suspected dengue fever cases by age group during the outbreak in Mandera east district, 2011.</p

    Awareness of dengue and distribution of exposure factors among suspected and confirmed dengue cases in Mandera east, 2011.

    No full text
    <p>Awareness of dengue and distribution of exposure factors among suspected and confirmed dengue cases in Mandera east, 2011.</p
    corecore