2 research outputs found

    Atom- and Step-Economical Preparation of Reduced Knoevenagel Adducts Using CO as a Deoxygenative Agent

    No full text
    A highly efficient one-step Rh-catalyzed preparation of reduced Knoevenagel adducts of various aldehydes and ketones with active methylene compounds has been developed. The protocol does not require an external hydrogen source and employs carbon monoxide as a deoxygenative agent. The use of malonic acid or cyanoacetamide enabled efficient formal deoxygenative addition of methyl acetate or acetonitrile to aldehydes. The developed methodology was applied to the synthesis of the precursors of biomedically important compounds

    Cyclobutadiene Metal Complexes: A New Class of Highly Selective Catalysts. An Application to Direct Reductive Amination

    No full text
    A catalyst of a new type, cyclobutadiene complex [(C<sub>4</sub>Et<sub>4</sub>)­Rh­(<i>p</i>-xylene)]­PF<sub>6</sub>, was found to promote selective reductive amination in the presence of carbon monoxide under mild conditions (1–3 bar, 90 °C). The reaction demonstrated perfect compatibility with a wide range of functional groups prone to reduction by conventional reducing agents. The developed system represents the first systematic investigation of cyclobutadiene metal complexes as catalysts
    corecore