11 research outputs found

    Venezuelan Equine Encephalitis Virus in Iquitos, Peru: Urban Transmission of a Sylvatic Strain

    Get PDF
    Enzootic strains of Venezuelan equine encephalitis virus (VEEV) have been isolated from febrile patients in the Peruvian Amazon Basin at low but consistent levels since the early 1990s. Through a clinic-based febrile surveillance program, we detected an outbreak of VEEV infections in Iquitos, Peru, in the first half of 2006. The majority of these patients resided within urban areas of Iquitos, with no report of recent travel outside the city. To characterize the risk factors for VEEV infection within the city, an antibody prevalence study was carried out in a geographically stratified sample of urban areas of Iquitos. Additionally, entomological surveys were conducted to determine if previously incriminated vectors of enzootic VEEV were present within the city. We found that greater than 23% of Iquitos residents carried neutralizing antibodies against VEEV, with significant associations between increased antibody prevalence and age, occupation, mosquito net use, and overnight travel. Furthermore, potential vector mosquitoes were widely distributed across the city. Our results suggest that while VEEV infection is more common in rural areas, transmission also occurs within urban areas of Iquitos, and that further studies are warranted to identify the precise vectors and reservoirs involved in urban VEEV transmission

    Salivary gland thrombostasin isoforms differentially regulate blood uptake of horn flies fed on control- and thrombostasin-vaccinated cattle

    Get PDF
    Thrombostasin (TS) is an anticlotting protein found in saliva of Haematobia irritons (horn flies). The polymorphic nature of the ts gene was first associated with success of horn flies blood feeding on a laboratory host, New Zealand White rabbits. In this study, we report results of similar studies testing blood uptake of horn flies feeding on a natural host, cattle. These studies confirmed the association of ts genotype with blood uptake of horn flies and showed that it was host species specific. In contrast to rabbits, blood uptake volumes of homozygous ts10 horn flies were lower than those of other ts genotypes when fed on control (ovalbumin-vaccinated) cattle. Cattle vaccinated with recombinant protein isoforms, rTS9 or rTB8, resisted horn fly feeding by yielding lower blood volumes compared with flies feeding on control cattle. The specific impact of vaccination, however, varied by ts genotype of flies, Cattle vaccinated with isoform rTS9 resisted flies of ts2, ts9, and tb8 genotype. Vaccination with isoform rTB8 produced resistance to ts8, ts9, and tb8 genotype flies. Horn flies of genotype ts10 were not affected by vaccination with either TS isoform and fed as well on rTS9- and rTB8-vaccinated as on control-vaccinated cattle. These experimental results confirm the efficacy of vaccines targeting horn fly salivary proteins and provide new insight into the dynamics of horn fly-cattle interactions in nature. © 2010 Entomological Society of America

    Evaluation of a recombinant salivary gland protein (thrombostasin) as a vaccine candidate to disrupt blood-feeding by horn flies

    No full text
    The potential for controlling blood-feeding by the cattle pest, Haematobia irritans irritans (horn fly), was tested by vaccination against thrombostasin (TS), an inhibitor of mammalian thrombin that is released into skin during horn fly blood-feeding. The increase in blood meal size that occurred for flies feeding on sensitized non-vaccinated hosts was blocked and egg development in female flies was delayed when horn flies fed on rabbits and cattle immunized with recombinant TS. This demonstration of the impact of disrupting TS action by vaccination provides a novel approach toward control of this veterinary pest and offers a paradigm for limiting blood-feeding in other medically-important insect species. © 2003 Elsevier Ltd. All rights reserved

    Analysis of Protein Sequence Identity, Binding Sites, and 3D Structures Identifies Eight Pollen Species and Ten Fruit Species with High Risk of Cross-Reactive Allergies

    No full text
    Fruit allergens are proteins from fruits or pollen that cause allergy in humans, an increasing food safety concern worldwide. With the globalization of food trade and changing lifestyles and dietary habits, characterization and identification of these allergens are urgently needed to inform public awareness, diagnosis and treatment of allergies, drug design, as well as food standards and regulations. This study conducted a phylogenetic reconstruction and protein clustering among 60 fruit and pollen allergens from 19 species, and analyzed the clusters, in silico, for cross-reactivity (IgE), 3D protein structure prediction, transmembrane and signal peptides, and conserved domains and motifs. Herein, we wanted to predict the likelihood of their interaction with antibodies, as well as cross-reactivity between the many allergens derived from the same protein families, as the potential for cross-reactivity complicates the management of fruit allergies. Phylogenetic analysis classified the allergens into four clusters. The first cluster (n = 9) comprising pollen allergens showed a high risk of cross-reactivity between eight allergens, with Bet v1 conserved domain, but lacked a transmembrane helix and signal peptide. The second (n = 10) cluster similarly suggested a high risk of cross-reactivity among allergens, with Prolifin conserved domain. However, the group lacked a transmembrane helix and signal peptide. The third (n = 13) and fourth (n = 29) clusters comprised allergens with significant sequence diversity, predicted low risk of cross-reactivity, and showed both a transmembrane helix and signal peptide. These results are critical for treatment and drug design that mostly use transmembrane proteins as targets. The prediction of high risk of cross-reactivity indicates that it may be possible to design a generic drug that will be effective against the wide range of allergens. Therefore, in the past, we may have avoided the array of fruit species if one was allergic to any one member of the cluster
    corecore