21 research outputs found

    Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer

    Get PDF
    Development of colorectal cancer occurs via a number of key pathways, with the clinicopathological features of specific subgroups being driven by underlying molecular changes. Mutations in key genes within the network of signalling pathways have been identified; however, therapeutic strategies to target these aberrations remain limited. As understanding of the biology of colorectal cancer has improved, this has led to a move toward broader genomic testing, collaborative research and innovative, adaptive clinical trial design. Recent developments in therapy include the routine adoption of wider mutational spectrum testing prior to use of targeted therapies and the first promise of effective immunotherapy for colorectal cancer patients. This review details current biomarkers in colorectal cancer for molecular stratification and for treatment allocation purposes, including open and planned precision medicine trials. Advances in our understanding, therapeutic strategy and technology will also be outlined

    A phase I open-label, dose-escalation study of NUC-3373, a targeted thymidylate synthase inhibitor, in patients with advanced cancer (NuTide:301)

    Get PDF
    The study was funded and the investigational drug NUC-3373 was supplied by NuCana plc. The centres that conducted this study are National Institute for Health and Care Research (NIHR) Biomedical Research Centres that also receive institutional funding as Cancer Research UK (CRUK) and Experimental Cancer Medicine Centres (ECMC). The Glasgow Experimental Cancer Medicine Centre (ECMC) is funded by Cancer Research UK and The Chief Scientist’s Office, Scotland (grant award A25174).Purpose 5-fluorouracil (5-FU) is inefficiently converted to the active anti-cancer metabolite, fluorodeoxyuridine-monophosphate (FUDR-MP), is associated with dose-limiting toxicities and challenging administration schedules. NUC-3373 is a phosphoramidate nucleotide analog of fluorodeoxyuridine (FUDR) designed to overcome these limitations and replace fluoropyrimidines such as 5-FU. Patients and methods NUC-3373 was administered as monotherapy to patients with advanced solid tumors refractory to standard therapy via intravenous infusion either on Days 1, 8, 15 and 22 (Part 1) or on Days 1 and 15 (Part 2) of 28-day cycles until disease progression or unacceptable toxicity. Primary objectives were maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) and schedule of NUC-3373. Secondary objectives included pharmacokinetics (PK), and anti-tumor activity. Results Fifty-nine patients received weekly NUC-3373 in 9 cohorts in Part 1 (n = 43) and 3 alternate-weekly dosing cohorts in Part 2 (n = 16). They had received a median of 3 prior lines of treatment (range: 0–11) and 74% were exposed to prior fluoropyrimidines. Four experienced dose-limiting toxicities: two Grade (G) 3 transaminitis; one G2 headache; and one G3 transient hypotension. Commonest treatment-related G3 adverse event of raised transaminases occurred in < 10% of patients. NUC-3373 showed a favorable PK profile, with dose-proportionality and a prolonged half-life compared to 5-FU. A best overall response of stable disease was observed, with prolonged progression-free survival. Conclusion NUC-3373 was well-tolerated in a heavily pre-treated solid tumor patient population, including those who had relapsed on prior 5-FU. The MTD and RP2D was defined as 2500 mg/m2 NUC-3373 weekly. NUC-3373 is currently in combination treatment studies. Trial registration Clinicaltrials.gov registry number NCT02723240. Trial registered on 8th December 2015. https://clinicaltrials.gov/study/NCT02723240.Peer reviewe

    Natural killer-like signature observed post therapy in locally advanced rectal cancer is a determinant of pathological response and improved survival

    Get PDF
    This work was supported by a very generous grant from the Sean Crummey Memorial Fund. The staff and infrastructure provided by the N. Ireland Biobank and the Belfast Experimental Cancer Medicine Centre allowed this research to take place. These are supported by the Research and Development Division of the N. Ireland Public Health Agency and Cancer Research UK. We would also like to express our gratitude to the staff at the Grampian Biorepository for providing the Tissue microarray materials for validation purposes.Peer reviewedPostprin

    A phase I open-label, dose-escalation study of NUC-3373, a targeted thymidylate synthase inhibitor, in patients with advanced cancer (NuTide:301)

    Get PDF
    Purpose: 5-fluorouracil (5-FU) is inefficiently converted to the active anti-cancer metabolite, fluorodeoxyuridine-monophosphate (FUDR-MP), is associated with dose-limiting toxicities and challenging administration schedules. NUC-3373 is a phosphoramidate nucleotide analog of fluorodeoxyuridine (FUDR) designed to overcome these limitations and replace fluoropyrimidines such as 5-FU. Patients and methods: NUC-3373 was administered as monotherapy to patients with advanced solid tumors refractory to standard therapy via intravenous infusion either on Days 1, 8, 15 and 22 (Part 1) or on Days 1 and 15 (Part 2) of 28-day cycles until disease progression or unacceptable toxicity. Primary objectives were maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) and schedule of NUC-3373. Secondary objectives included pharmacokinetics (PK), and anti-tumor activity. Results: Fifty-nine patients received weekly NUC-3373 in 9 cohorts in Part 1 (n = 43) and 3 alternate-weekly dosing cohorts in Part 2 (n = 16). They had received a median of 3 prior lines of treatment (range: 0–11) and 74% were exposed to prior fluoropyrimidines. Four experienced dose-limiting toxicities: two Grade (G) 3 transaminitis; one G2 headache; and one G3 transient hypotension. Commonest treatment-related G3 adverse event of raised transaminases occurred in &lt; 10% of patients. NUC-3373 showed a favorable PK profile, with dose-proportionality and a prolonged half-life compared to 5-FU. A best overall response of stable disease was observed, with prolonged progression-free survival. Conclusion: NUC-3373 was well-tolerated in a heavily pre-treated solid tumor patient population, including those who had relapsed on prior 5-FU. The MTD and RP2D was defined as 2500 mg/m2 NUC-3373 weekly. NUC-3373 is currently in combination treatment studies

    Circulating tumour DNA kinetics in recurrent/metastatic head and neck squamous cell cancer patients

    No full text
    Purpose: Immune checkpoint blockade (ICB) has become a standard of care in the treatment of recurrent/metastatic head and neck squamous cell cancer (R/M HNSCC). However, only a subset of patients benefit from treatment. Quantification of plasma circulating tumour DNA (ctDNA) levels and on-treatment kinetics may permit real-time assessment of disease burden under selective pressures of treatment. Patients and methods: R/M HNSCC patients treated with systemic therapy, platinum-based chemotherapy (CT) or ICB, underwent serial liquid biopsy sampling. Biomarkers tested included ctDNA measured by CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) and markers of host inflammation measured by neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). Results: Among 53 eligible patients, 16 (30%) received CT, 30 (57%) ICB [anti-PD1/L1] monotherapy and 7 (13%) combination immunotherapy (IO). Median progression-free survival (PFS) and overall survival (OS) were 2.8 months (95% CI, 1.3–4.3) and 8.2 months (95% CI, 5.6–10.8), respectively. Seven (13%) patients experienced a partial response and 21 (40%) derived clinical benefit. At baseline, median ctDNA variant allele frequency (VAF) was 4.3%. Baseline ctDNA abundance was not associated with OS (p = 0.56) nor PFS (p = 0.54). However, a change in ctDNA VAF after one cycle of treatment (ΔVAF (T1–2)) was predictive of both PFS (p&lt; 0.01) and OS (p&lt; 0.01). Additionally, decrease in ΔVAF identified patients with longer OS despite early radiological progression, 8.2 vs 4.6 months, hazard ratio 0.44 (95% CI, 0.19–0.87) p = 0.03. After incorporating NLR and PLR into multivariable Cox models, ctDNA ∆VAF retained an association with OS. Conclusions: Early dynamic changes in ctDNA abundance, after one cycle of treatment, compared to baseline predicted both OS and PFS in R/M HNSCC patients on systemic therapy.</p

    A first-in-human Phase I dose-escalation trial of the novel therapeutic peptide, ALM201, demonstrates a favourable safety profile in unselected patients with ovarian cancer and other advanced solid tumours

    Get PDF
    Background: We aimed to assess the safety, tolerability and pharmacokinetics of a novel anti-angiogenic peptide. Methods: We used an open-label, multicentre, dose-escalation Phase I trial design in patients with solid tumours. ALM201 was administered subcutaneously once daily for 5 days every week in unselected patients with solid tumours. Results: Twenty (8 male, 12 female) patients with various solid tumours were treated (18 evaluable for toxicity) over eight planned dose levels (10–300 mg). ALM201 was well-tolerated at all dose levels without CTCAE grade 4 toxicities. Adverse events were predominantly grades 1–2, most commonly, localised injection-site reactions (44.4%), vomiting (11%), fatigue (16.7%), arthralgia (5.6%) and headache (11%). Thrombosis occurred in two patients at the 100 mg and 10 mg dose levels. The MTD was not reached, and a recommended Phase II dose (RP2D) based on feasibility was declared. Plasma exposure increased with dose (less than dose-proportional at the two highest dose levels). No peptide accumulation was evident. The median treatment duration was 11.1 (range 3–18) weeks. Four of 18 evaluable patients (22%) had stable disease. Conclusions: Doses up to 300 mg of ALM201 subcutaneously are feasible and well-tolerated. Further investigation of this agent in selected tumour types/settings would benefit from patient-selection biomarkers

    A Systems Biology Approach Identifies SART1 as a Novel Determinant of Both 5-Fluorouracil and SN38 Drug Resistance in Colorectal Cancer

    No full text
    Chemotherapy response rates for advanced colorectal cancer remain disappointingly low, primarily due to drug resistance, so there is an urgent need to improve current treatment strategies. In order to identify novel determinants of resistance to the clinically relevant drugs 5-Fluorouracil (5-FU) and SN38 (the active metabolite of irinotecan), transcriptional profiling experiments were carried out on pre-treatment metastatic colorectal cancer biopsies and HCT116 parental and chemotherapy-resistant cell line models using a disease-specific DNA microarray. To enrich for potential chemo-resistance-determining genes, an unsupervised bioinformatics approach was employed, and 50 genes were selected and then functionally assessed using custom-designed siRNA screens. In the primary siRNA screen, silencing of 21 genes sensitised HCT116 cells to either 5-FU or SN38 treatment. Three genes (RAPGEF2, PTRF and SART1) were selected for further analysis in a panel of 7 CRC cell lines. Silencing SART1 sensitised all 7 cell lines to 5-FU treatment and 4/7 cell lines to SN38 treatment. However, silencing of RAPGEF2 or PTRF had no significant effect on 5-FU or SN38 sensitivity in the wider cell line panel. Further functional analysis of SART1 demonstrated that its silencing induced apoptosis that was caspase 8-dependent. Furthermore, silencing of SART1 led to a down-regulation of the caspase 8 inhibitor, c-FLIP, which we have previously demonstrated is a key determinant of drug resistance in colorectal cancer. This study demonstrates the power of systems biology approaches for identifying novel genes that regulate drug resistance and identifies SART1 as a previously unidentified regulator of c-FLIP and drug-induced activation of caspase 8
    corecore