27 research outputs found

    Plasma resistant atypical hemolytic uremic syndrome associated with a CFH mutation treated with eculizumab: a case report

    Get PDF
    INTRODUCTION: Thrombotic microangiopathies are a group of diseases presenting as microangiopathic hemolytic anemia, thrombocytopenia and end-organ dysfunction. As the role of the complement system was elucidated in atypical hemolytic uremic syndrome pathogenesis, eculizumab was successfully introduced into clinical practice. We present a large pedigree with multiple individuals carrying a functionally significant novel factor H mutation. We describe the proband’s presentation following a presumed infectious trigger requiring plasma exchange and hemodialysis. CASE PRESENTATION: A 32-year-old Caucasian woman presented with pyrexia and headache lasting one week to our Emergency Department. She gave no history of diarrhea or other symptoms to account for her high temperature. She was not taking any medication. She was pyrexial (38°C), tachycardic (110bpm) and hypertensive (160/110mmHg). Her fundoscopy revealed grade IV hypertensive retinopathy. She had mild pretibial and periorbital edema, with oliguria (450mL/day). She had a pregnancy one year previously, during which she had hypertension, proteinuria and edema, with successful delivery at term. Her mother had died in her early 30s with a clinical picture consistent with thrombotic microangiopathy. Her laboratory evaluation showed microangiopathic hemolytic anemia. After 22 sessions of plasma exchange, her lactate dehydrogenase levels started to climb. As a result, she was classified as plasma resistant and eculizumab therapy was instituted. Her lactate dehydrogenase level and platelet count normalized, and her renal function recovered after three months of dialysis. CONCLUSIONS: We demonstrate that, even in patients with atypical hemolytic uremic syndrome and prolonged dialysis dependence, recovery of renal function can be seen with eculizumab treatment. We suggest a treatment regime of at least three months prior to evaluation of efficacy

    FO059PRESENTATION AND CLINICAL OUTCOMES OF DGKE MEDIATED RENAL DISEASE.

    Full text link

    Thrombotic Microangiopathy and the Kidney

    Full text link

    The role of complement factor I rare genetic variants in age related macular degeneration in Finland.

    No full text
    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the developed world. The alternative pathway (AP) of complement has been linked to the pathogenesis of AMD. In particular, rare variants (RVs) in the complement factor I (CFI) gene encoding the Factor I (FI) protein confer increased AMD risk. The prevalence of CFI RVs are well characterised in European AMD, however little is known about other populations. The Finnish population underwent genetic restriction events which have skewed allele frequencies in unexpected ways. A series of novel or enriched CFI RVs were identified in individuals with dry AMD from the Finnish Biobank Cooperative (FINBB), but the relationship between these genotypes and contribution to disease was unclear. Understanding how RVs impact the ability of FI to regulate the complement system is important to inform mechanistic understanding for how different genotypes contribute to disease development. To explore this a series of in vitro assays were used to functionally characterise the protein products of 3 CFI RVs enriched in FINBB dry AMD, where no prior data were available. The G547R variant resulted in almost complete loss of both classical pathway and AP regulatory potential. The c.982 g>a variant encoding G328R FI perturbed an exon splice enhancer site which resulted in exon skipping and a premature stop codon in vitro and low levels of FI in vivo. Despite detailed analysis no defect in levels or function was demonstrated in T107A. Functional characterization of all Finnish CFI RVs in the cohort allowed us to demonstrate that in Finnish dry AMD, collectively the type 1 CFI RVs (associated with FI haploinsufficiency) were significantly enriched with odds ratio (ORs) of 72.6 (95% confidence interval; CI 16.92 to 382.1). Meanwhile, type 2 CFI RVs (associated with FI dysfunction) collectively conferred a significant OR of 4.97 (95% CI 1.522 to 15.74), and non-impaired or normal CFI RV collectively conferred an of OR 3.19 (95% CI 2.410 to 4.191) although this was driven primarily by G261D. Overall, this study for the first time determined the ORs and functional effect for all CFI RVs within a Geographic Atrophy (GA) cohort, enabling calculations of combined risk scores that underline the risk conferred by type 1 and 2 CFI RVs in GA/AMD

    Functional Characterization of Rare Genetic Variants in the N-Terminus of Complement Factor H in aHUS, C3G, and AMD

    No full text
    Membranoproliferative glomerulonephritis (MPGN), C3 glomerulopathy (C3G), atypical haemolytic uraemic syndrome (aHUS) and age-related macular degeneration (AMD) have all been strongly linked with dysfunction of the alternative pathway (AP) of complement. A significant proportion of individuals with MPGN, C3G, aHUS and AMD carry rare genetic variants in the CFH gene that cause functional or quantitative deficiencies in the factor H (FH) protein, an important regulator of the AP. In silico analysis of the deleteriousness of rare genetic variants in CFH is not reliable and careful biochemical assessment remains the gold standard. Six N-terminal variants of uncertain significance in CFH were identified in patients with these diseases of the AP and selected for analysis. The variants were produced in Pichia Pastoris in the setting of FH CCPs 1–4, purified by nickel affinity chromatography and size exclusion and characterized by surface plasmon resonance and haemolytic assays as well as by cofactor assays in the fluid phase. A single variant, Q81P demonstrated a profound loss of binding to C3b with consequent loss of cofactor and decay accelerating activity. A further 2 variants, G69E and D130N, demonstrated only subtle defects which could conceivably over time lead to disease progression of more chronic AP diseases such as C3G and AMD. In the variants S159N, A161S, and M162V any functional defect was below the capacity of the experimental assays to reliably detect. This study further underlines the importance of careful biochemical assessment when assigning functional consequences to rare genetic variants that may alter clinical decisions for patients.</jats:p

    A novel method for real-time analysis of the complement C3b:FH:FI complex reveals dominant negative CFI variants in age-related macular degeneration

    No full text
    Age-related macular degeneration (AMD) is linked to 2 main disparate genetic pathways: a chromosome 10 risk locus and the alternative pathway (AP) of complement. Rare genetic variants in complement factor H (CFH; FH) and factor I (CFI; FI) are associated with AMD. FH acts as a soluble cofactor to facilitate FI’s cleavage and inactivation of the central molecule of the AP, C3b. For personalised treatment, sensitive assays are required to define the functional significance of individual AP genetic variants. Generation of recombinant FI for functional analysis has thus far been constrained by incomplete processing resulting in a preparation of active and inactive protein. Using an internal ribosomal entry site (IRES)-Furin-CFI expression vector, fully processed FI was generated with activity equivalent to serum purified FI. By generating FI with an inactivated serine protease domain (S525A FI), a real-time surface plasmon resonance assay of C3b:FH:FI complex formation for characterising variants in CFH and CFI was developed and correlated well with standard assays. Using these methods, we further demonstrate that patient-associated rare genetic variants lacking enzymatic activity (e.g. CFI I340T) may competitively inhibit the wild-type FI protein. The dominant negative effect identified in inactive factor I variants could impact on the pharmacological replacement of FI currently being investigated for the treatment of dry AMD.</jats:p

    The role of complement factor I rare genetic variants in age related macular degeneration in Finland

    No full text
    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the developed world. The alternative pathway (AP) of complement has been linked to the pathogenesis of AMD. In particular, rare variants (RVs) in the complement factor I (CFI) gene encoding the Factor I (FI) protein confer increased AMD risk. The prevalence of CFI RVs are well characterised in European AMD, however little is known about other populations. The Finnish population underwent genetic restriction events which have skewed allele frequencies in unexpected ways. A series of novel or enriched CFI RVs were identified in individuals with dry AMD from the Finnish Biobank Cooperative (FINBB), but the relationship between these genotypes and contribution to disease was unclear. Understanding how RVs impact the ability of FI to regulate the complement system is important to inform mechanistic understanding for how different genotypes contribute to disease development. To explore this a series of in vitro assays were used to functionally characterise the protein products of 3 CFI RVs enriched in FINBB dry AMD, where no prior data were available. The G547R variant resulted in almost complete loss of both classical pathway and AP regulatory potential. The c.982 g&gt;a variant encoding G328R FI perturbed an exon splice enhancer site which resulted in exon skipping and a premature stop codon in vitro and low levels of FI in vivo. Despite detailed analysis no defect in levels or function was demonstrated in T107A. Functional characterization of all Finnish CFI RVs in the cohort allowed us to demonstrate that in Finnish dry AMD, collectively the type 1 CFI RVs (associated with FI haploinsufficiency) were significantly enriched with odds ratio (ORs) of 72.6 (95% confidence interval; CI 16.92 to 382.1). Meanwhile, Type 2 CFI RVs (associated with FI dysfunction) collectively conferred a significant OR of 4.97 (95% CI 1.522 to 15.74), and non-impaired or normal CFI RV collectively conferred an of OR 3.19 (95% CI 2.410 to 4.191) although this was driven primarily by G261D. Overall, this study for the first time determined the ORs and functional effect for all CFI RVs within a Geographic Atrophy (GA) cohort, enabling calculations of combined risk scores that underline the risk conferred by Type I and 2 CFI RVs in GA/AMD.<br/
    corecore