34 research outputs found

    Transfer of Sulfur from IscS to IscU during Fe/S Cluster Assembly

    Get PDF
    The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [35S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of 35S from [35S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (Kd ~2 µM) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and 35S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta 376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer 35S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta 376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU

    Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU

    Get PDF
    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20

    The Rescue of Fannie Mae and Freddie Mac

    Get PDF
    Staff Report including the following:- Describes and evaluates the measures taken by the U.S. government to rescue Fannie Mae and Freddie Mac in September 2008. - Outlines the business model of these two firms and their role in the U.S. housing finance system. - The sources of financial distress that the firms experienced and the events that ultimately led the government to take action. - Describes the various resolution options available to policymakers. - Evaluates the success of the choice of conservatorship and other actions taken

    Three hydrophobic amino acids in Escherichia coli HscB make the greatest contribution to the stability of the HscB-IscU complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>General iron-sulfur cluster biosynthesis proceeds through assembly of a transient cluster on IscU followed by its transfer to a recipient apo-protein. The efficiency of the second step is increased by the presence of HscA and HscB, but the reason behind this is poorly understood. To shed light on the function of HscB, we began a study on the nature of its interaction with IscU. Our work suggested that the binding site of IscU is in the C-terminal domain of HscB, and two different triple alanine substitutions ([L92A, M93A, F153A] and [E97A, E100A, E104A]) involving predicted binding site residues had detrimental effects on this interaction. However, the individual contribution of each substitution to the observed effect remains to be determined as well as the possible involvement of other residues in the proposed binding site.</p> <p>Results</p> <p>In the work reported here, we used isothermal titration calorimetry to characterize the affinity of single alanine HscB mutants for IscU, and subsequently confirmed our results with nuclear magnetic resonance spectroscopy. Alanine substitutions of L92, L96, and F153 severely impaired the ability of HscB to form a complex with IscU; substitutions of R87, R99, and E100 had more modest effects; and substitutions of T89, M93, E97, D103, E104, R152, K156, and S160 had only minor or no detectable effects.</p> <p>Conclusions</p> <p>Our results show that the residues of HscB most important for strong interaction with IscU include three hydrophobic residues (L92, L96, and F153); in addition, we identified a number of other residues whose side chains contribute to a lesser extent to the interaction. Our results suggest that the triple alanine substitution at HscB positions 92, 96, and 153 will destabilize the HscB-IscU complex by ΔΔ<it>G</it><sub>b</sub>≅ 5.7 kcal/mol, equivalent to a ≅ 15000-fold reduction in the affinity of HscB for IscU. We propose that this triple mutant could provide a more definitive test of the functional importance of the HscB-IscU interaction in vivo than those used previously that yielded inconclusive results.</p

    Mitogen-activated protein/extracellular signal-regulated kinase kinase 1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells.

    Get PDF
    Activation of the mitogen-activated protein kinase (MAPK) pathway plays a major role in neoplastic cell transformation. Using a proteomics approach, we identified alpha tubulin and beta tubulin as proteins that interact with activated MAP/extracellular signal-regulated kinase kinase 1 (MEK1), a central MAPK regulatory kinase. Confocal analysis revealed spatiotemporal control of MEK1-tubulin colocalization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells. Peptide arrays identified the critical role of positively charged amino acids R108, R113, R160, and K157 on the surface of MEK1 for tubulin interaction. Overexpression of activated MEK1 caused defects in spindle arrangement, chromosome segregation, and ploidy. In contrast, chromosome polyploidy was reduced in the presence of an activated MEK1 mutant (R108A, R113A) that disrupted interactions with tubulin. Our findings indicate the importance of signaling by activated MEK1-tubulin in spindle organization and chromosomal instability

    Mudança organizacional: uma abordagem preliminar

    Full text link
    corecore